

Creating Sustainable Environments.

MANUAL SAUTER ASV3

1 Contents

2	ABOUT CONTROLLERS				
	2.1 About Controllers	5			
	2.2 Specifications	5			
2.2.1	Analog Inputs	5			
2.2.2	Analog Outputs				
2.2.3	Digital Outputs				
2.2.4	Communications to BACnet MS/TP	6			
2.2.5	Air Flow Sensor Features	6			
2.2.6	Memory	6			
2.2.7	Certification	6			
2.2.8	Actuator Specifications	6			
	2.3 Available Models	7			
	2.4 Accessories and Replacement Parts	7			
	2.5 Technical Specification	8			
3	Installing the controllers	9			
	3.1 Setting of Angle of Rotations and Limits	9			
3.1.1	Mechanical Limiting Angle of Rotation	9			
	3.2 Mounting on A VAV Terminal Box	9			
	3.3 Connecting an Airflow Sensor	10			
	3.4 Connecting Inputs and Outputs	11			
	3.5 Connecting to Room Thermostats	11			
	3.6 Connecting Power	11			
	3.7 Analog Input	12			
	3.8 Digital Outputs	12			
	3.9 Analog Outputs	12			
4	Configuration the VAV Box and Actuators	13			
	4.1 Maintenance	13			
	4.2 Changing the Temperature Set-points And Limits	13			
	4.3 Configuring the VAV Box Options	13			
	4.4 EY-RU305F700XW HMI Parameter Setting Flow Chart	14			
	4.5 Getting Started with Configuration	14			
	4.6 Entering System Temperature Set-points And Limits	15			

	4.7	Configuring the VAV Terminal Box Options	. 18
	4.8	Configuring the Airflow Set-points	. 19
	4.9	Configuring the Airflow Testing and Calibration	20
	4.10	Configuring the Damper Position	. 21
	4.11	Calibrating the Sensors	. 22
	4.12	Exiting Configuration Mode	. 23
	4.13	Configuring the Instance ID	23
5	Coc	ling or Heating Without Reheat	24
	5.1	Cooling or Heating Without Reheat	. 24
	5.2	Sequences of Operation	. 24
	5.3	Input Sources	. 24
	5.4	EY-RU305F700XW Series Room Thermostats	. 25
6	Roc	om Set points	25
	6.1	Room Set points	. 25
	6.2	Active Set Point	. 25
	6.3	Occupied	. 25
	6.4	Unoccupied	. 26
	6.5	Damper Operation	. 26
7	Sys	tem Integration and Networking	26
	7.1	System Integration and Networking	. 26
	7.2	Connecting to an MS/TP Network	. 27
	7.3	Connections and Wiring	. 28
	7.4	Network Bulbs	28
	7.5	Setting Up Networking Communications	. 28
	7.6	BACnet Instance ID	. 29
	7.7	Mac Address	. 29
8	BAG	Cnet Objects List	30
	8.1	TABLE 1: BACNET OBJECT LIST FOR CONTROLLER INPUTS/OUTPUTS	. 30
	8.2	TABLE 2: BACNET OBJECT LIST FOR ANALOG VALUES	. 31
	8.3	TABLE 3: BACNET OBJECT LIST FOR BINARY VALUES	. 38

2 ABOUT CONTROLLERS

2.1 About Controllers

ASV305BF7XXXW smart VAV actuators provide high-performance DDC (direct digital control) of pressure-independent, VAV (variable-air-volume) functions are designed and produced for extended functionalities in HVAC systems, VAV and laboratory applications.

The controllers' features are simple to set up yet comprehensive what the function to use. We are menu-driven and 3 setup choices when using the ASV305BF7XXXW VAV actuator. You can set up our actuator by using:

- BMS parameter setting
- BACnet DDC editor software (provided)
- Thermostats (EY-RU305F700XW Series)

All our models are BACnet Applications Specific Controllers (BASC) and are ready to connect to a BACnet MS/TP network. Device instance, MAC address, and Baud rate can be easily be set from the EY-RU305F700XW Series Thermostats and ASV305BF7XXXW itself without any special tools or software.

2.2 Specifications

All our inputs and outputs are factory programmed and application specific. No field configuration is needed unless its needed for offset.

For details listing our input and output of object list, please see BACnet object list, page 30 onwards.

2.2.1 Analog Inputs

Analog input mean BACnet analog input. Not all Analog input are applicable/required for our models. Connectors: 22 – 24 AWG

Input range: Ai0 -Passive, 10 k Ω , Ai1 0 to 10vDc

2.2.2Analog Outputs

Analog outputs mean BACnet analog outputs. Not all Analog output are applicable/required for our models. Connectors: 22 – 24 AWG

Output range: Ao1/2-0 to 10VDC

2.2.3Digital Outputs

Digital outputs mean BACnet binary outputs. Not all Digital input are applicable/required for our models Connectors: 22 – 24 AWG

Output range: Do0/1 – 24VAC

2.2.4Communications to BACnet MS/TP

- BACNET MS/TP RS-485, 9600-76800 BPS, 1200M
- Removable terminal block
- Wire size recommended 22 24 AWG
- Dip Switches on end of line termination return

2.2.5 Air Flow Sensor Features

- CMOSens® Technology
- Configured as BACnet analog input object. Measuring Range up to ±500 Pa (±2 inH2O) Span accuracy of 5%
- Zero-point accuracy 0.1pa
- Tube connections for 1/4-inch FR tubing

2.2.6Memory

- Programs and program parameters are stored in non-volatile memory.
- Auto restart on power failure.

2.2.7Certification

- Federal Communications Commission (FCC)
- CE Certified
- BACnet Testing Laboratory (BTL) listed as an application specific controller (B-ASC)

2.2.8Actuator Specifications

Dimension (mm)

2.3 Available Models

The following is a list of ASV305BF7XXXW series available models.

Туре	Measuring range	Running time for 90	Torque	Inputs/Outputs
ASV305BF700 0W	0500 Pa	75s to 85s	5 Nm	0
ASV305BF720 0W	0500 Pa	75s to 85s	5 Nm	2 AI, 0 DO, 0 AO
ASV305BF722 0W	0500 Pa	75s to 85s	5 Nm	2 AI, 2 DO, 0 AO
ASV305BF720 2W	0500 Pa	75s to 85s	5 Nm	2 AI, 0 DO, 2 AO
ASV305BF722 2W	0500 Pa	75s to 85s	5 Nm	2 AI, 2 DO, 2 AO

2.4 Accessories and Replacement Parts

Following accessories and replacement parts are available from SAUTER

Туре	Description
EY-RU305F7001W	Room unit with LCD display and temperature sensor
EY-RU305F7002W	Room unit with LCD display, humidity, and temperature sensor
EY-RU305F7003W	Room unit with LCD display, humidity, CO2, and temperature sensor

Power supply				
Power supply	Power supply	24 V~, +/-10%, 5060 Hz		
Power consumption at nominal	Power consumption during operation5	1.5 W		
voltage 50/60 Hz (~/=)				
	Power consumption when idle	0.5 W		
	Parameters			
Integrated damper actuator	Angle of rotation	90° (95° mechanical)		
	Admissible dimensions of damper shaft	Ø 616 mm, □ 5. 12 mm		
	Admissible damper shaft (hardness)	Max 300 HV		
	Surge-voltage resistance	Not supported on 24V model		
	Operating noise	< 42 dB (A)		
Ap sensor	Measuring range Δp (gain = 1)	0500 Pa		
_F	Linearity error	3% of reading		
	Time constant	0.23 s		
	Influence of position	< 1 Pa		
	Reproducibility	0.5% FS		
	Zero-point stability	< 0.05 Pa / Year		
	Admissible positive pressure	+1 kPa		
	Admissible operating pressure ostat	+5 kPa		
		$Q_{i} = 35.6 \text{ mm}$		
	Ambient conditions			
		0.50 °C		
	Storage and mansport temperature	-20, 70 °C		
		5% to 95% rb, pop-condensing		
		378 to 3378 m, non-condensing		
	Analogue inputs	Dry contact for any kind input & Thermistor 10k		
		0.10V $4.20mA$ 12 bits resolution		
	RS-485 not electrically isolated	9600-76800 BPS 1200 Meters		
		BACNET MS/TP RS/85		
		9600-76800 BBS 1200 Meters		
	BACnet BTL certification	BACnet Application Specific Controller (B-		
	BACHELDTE Certification	ASC)		
	Access method	Client/server		
	Тороlоду	Line, daisy chain		
	Number of participants	Up to 127 recommended 32		
	Bus termination	120 Ω (both ends) SW4 (S3)		
	Construction	·		
	Weight	0.68 kg		
	Fitting	Self-centering spindle adapter		
	Standards and directives			
	Type of protection	IP20 (EN 60529)		
	Protection class	III (EN 60730)		
	Conformity	Machine directive 2006/42/EC, appendix II 1.		
		В		
	EMC Directive 2014/30/EU	EN 61326 1 :2013 Electrical equipment for		
		measurement, control and laboratory use EMC		
		requirements Part 1: General requirements		
		EN 61326-1:2013, EN 61000-4-2:2009, EN		
		61000-4-3:2006+A1:2008+A2:2010, EN		
		61000-4-8:2010, FCC Part 15, subpart B, Class		
		A		

3 Installing the controllers

3.1 Setting of Angle of Rotations and Limits

ASV305BF7XXXW controllers are manufactured for a damper or VAV Terminal box that rotates from 0 to 90 degrees, open to close position. If the VAV box is not a 90-degree, then set the rotation limits to its suitable degree before mounting the controllers.

3.1.1 Mechanical Limiting Angle of Rotation

Adjustment of mechanical limiter

- 1. Loosen screw of mechanical limiter
- 2. Move limiter to appropriate position *
- 3. Tighten screw

* Working range of 90° can be reduced up to 30° from each end position

3.2 Mounting on A VAV Terminal Box

Mounting the controller inside the metal enclosure. To maintain the specifications of the wiring, its recommended to use either shield cables or enclose all cables in the conduit.

Mount the controller directly over the shaft with a min. length of 45mm. The shaft dimensions must be 06 to 15 mm if round and 5 to 10.5mm if square in shape.

Mount the controller as follows:

- 1. Manually rotate the damper on the VAV box to fully open position.
- 2. On the ASV305BF7XXXW controller, press the manual override button and rotate the bolt in the same direction that opened the VAV box. Turn the angle of rotation to its limit.
- 3. Loosen the nuts and the U-bolt until the shaft can fit through the collar.
- 4. Place the ASV305BF7XXXW controller over the shaft.
- 5. Tighten the nuts on the U-bolt.
- 6. Center the mounting point with our damper holder provided in the box and screw the holder with the screw provided.
- 7. Evenly tighten the U-bolt.

3.3 Connecting an Airflow Sensor

An airflow sensor is one of the inputs on the controller. Connect the tubing from the pitot assembly of the airflow sensors input to the VAV terminal box differential pressure plug. Our airflow sensor is uni-direction.

3.4 Connecting Inputs and Outputs

ASV305BF7XXXW VAV actuators series have preconfigured its inputs and outputs to support the supplied program and applications.

- For more detail of the input and output information, please see specifications page 5.
- For connecting to Room thermostats, please see below chapter 3.5.
- For details listing our input and output of object list, please see BACnet object list, page 30 onwards.

3.5 Connecting to Room Thermostats

The ASV305BF7XXXW VAV controller is pre-program for all our supported EY-RU305F700XW room thermostats. Connect any of the following thermostats using RJ-11 cable and no additional programming or configuration is required to function.

- EY-RU305F7001W
- EY-RU305F7002W
- EY-RU305F7003W

Connect the ASV305BF7XXXW VAV controller to the EY-RU305F700XW room thermostats using a standard RJ-11 cable up to 35M long. See the installation guide for more info.

3.6 Connecting Power

The ASV305BF7XXXW VAV controller requires a 24VAC or 100 – 277VAC power supply. Use the following guidelines when choosing the wiring transformers to its controller.

- 1. Using a Class-2 Transformer of its appropriate size to supply power ASV305BF7XXXW VAV controller.
- 2. SAUTER recommends using one transformer for each ASV305BF7XXXW VAV controllers.

Connect the 24VAC/ 100 – 277VAC power supply to the terminal block on the right side of the controller. Connect the ground side of the transformer to its negative terminal [-] and the AC phase to the positive [+] terminal. Power is supplied to the controller once the transformer is connected to power.

3.7 Analog Input

ASV305BF7XXXW VAV controller specific models comes with 2 Analog Input (AI).

AIO - Thermistor 10k (type II) AI1 - 0-10VDC

The AIO can be used as a Dry Contact for any kind of input including occupancy sensor for energy saving or temperature input of Thermistor 10K(TypeII). While AI1 can be used for 0-10 VDC (or) 0-20 mA analog input including temperature/humidity/CO2/pressure sensor for additional application.

3.8 Digital Outputs

ASV305BF7XXXW VAV controller specific models with 2 Digital Output (DO).

DO0 & 1 - 24 VAC ± 10%

The DO can be used for on/off control heating valve, fan control, 2-stage electric duct heater, as well as to power other field devices such as temperature sensor or differential pressure sensor which needs 24VAC supply.

3.9 Analog Outputs

ASV305BF7XXXW VAV controller specific models come with 2 analog Outputs (AO).

AO 0 & 1 - 0-10 VDC/ 0-20 mA

The AO can be used to control modulating heating valve or electric duct heater with proportional control.

4 Configuration the VAV Box and Actuators

4.1 Maintenance

Our actuators are maintenance-free. If necessary, please clean it with a dry cloth on the surface cover.

4.2 Changing the Temperature Set-points And Limits

Changing the ASV305BF7XXXW VAV actuators user functions with EY-RU305F700XW series thermostats are limited to active setpoint of the room and occupancy mode.

Quick start to change set points:

- 1. Press Up or down to change the temperature setpoint.
- 2. Press the [power] button to change the occupancy mode.

To Enter the admin mode, press the "UP" and "DOWN" button together and hold for 3 seconds. You may need a password to enter.

4.3 Configuring the VAV Box Options

The configurations of the functions that are accessible through an EY-RU305F700XW series room thermostat. The values and setting that are entered during the installation and commissioning of a VAV terminal unit can be set via 3 ways. Typically, most of the functions do not need to change after the installation and commissioning process.

To set up the configuration function, you will need the following items and information.

- Details about the VAV terminal unit. Example size, inlet diameter and max/min airflow.
- An EY-RU305F700XW series thermostats, BMS system or a PC to be use as a configuration tool.
- The Building automation system configurations and setting for the network.

Please take note that not all functions are available on every model of the ASV305BF7XXXW VAV controller.

4.4 EY-RU305F700XW HMI Parameter Setting Flow Chart

4.5 Getting Started with Configuration

NO.	PROCEDURE	DETAIL STEPS	SENSOR DISPLAY
1	Entering Admin Mode	1. Connect the EY-RU305F700XW thermostat to ASV305BF7XXXW controller	s 100 *** *
		Press the "UP" and "DOWN" button together and hold for 3 secs.	s Screen on password
		 If password is not changed, the password is "100" 	Err I
		4. If display "ERR", the password is wrong	Incorrect Password
		5. If display "COFG", you have successfully entered the admin mode	Successfully entered admin mode
2	Select a configuration	 Choose COFG for more configuration setting 	* * 8ctu
	TUNCTION	2. Choose "ACTu" for BACnet instance IE configuration	For BACnet instance
		3. Choose "Exit" to return to normal mode	

		EII-E To exit

4.6 Entering System Temperature Set-points And Limits

The system temperature set-points are the operation parameters and limits for the ASV305BF7XXXW VAV controllers/VAV terminal box.

The temperature set-points include the following functions:

- 1. Max temperature set point
- 2. Min Temperature set point
- 3. Celsius or Fahrenheit selection
- 4. CFM or LPS or CMH airflow unit
- 5. Temperature display _ Present Value or Set Value
- 6. Button Lock Level

NO.	PROCEDURE	DETAIL STEPS	SENSOR DISPLAY
1	Set Temperature setpoint	 Use the arrow to "SETP". Press the power buttor to select it 	SEtp on scroop
2	Set Max temp setpoint	 Adjustable using "up" and "down" button from 0 to 100 value 	28. 0°
		2. Press power button to move on to the nex function	Max Temp set-point
3	Set Min Temp Setpoint	 Adjustable using "up" and "down" button from 0 to 100 value 	
		2. Press power button to move on to the nex function	22. 0°
		 Please take note that Min Temp cannot be higher than Max temp set- point 	Min Temp Setpoint

4	Celsius or Fahrenheit selection	1.	Adjustable using "up" and "down" button to either F (Fahrenheit) or C (Celsius) Press power button to move on to the next	F ** * [*]
			function	To choose Fahrenheit or Celsius

NO.	PROCEDURE	DETAII	. STEPS	SENSOR DISPLAY
5	CFM or LPS or CMH airflow unit	1.	Adjustable using "up" and "down" button to either CFM (cubic feet per minute) or LPS (liters per second) or CMH (cubic meters per hour)	Options for CFM,
		2.	Press power button to move on to the next function	LPS or CMH
6	Temperature Dis- play	1.	Adjustable using "up" and "down" button to either SV (set value) or PV (present value)	
0	Present Value or Set Value	2.	Press power button to move on to the next function	SU ^{~~} 419
				Set Value or Present Value
7	Lock Level	1.	Adjustable using "up" and "down" button to choose lock level: 0 (Unlock) or 1 (Lock temperature setting) or 2(Lock Occupancy mode & temperature setting)	Lock Level
		2.	Press power button to move on to the next function	

4.7 Configuring the VAV Terminal Box Options

The Configuring VAV terminal box options set the ASV305BF7XXXW VAV controller for specific mechanical installation and configuration for the VAV box. The box options include the following functions:

- 1. Set Primary K factor
- 2. Set VAV inlet diameter
- 3. Cool or heating mode

NO.	PROCEDURE	DETAIL STEPS	SENSOR DISPLAY
1	Enter VAV box configuration	 Use the arrow to "VAV". Press the power button to select it 	VAV on screen
2	Set Primary K factor	 Once you press the power button on the "VAV", you should enter "K factor" Adjustable using "up" and "down" button from -0 to 1000 value Press power button to move on to the next function 	K factor
3	Set VAV inlet diameter	 Adjustable using "up" and "down" button from 0 to 400 value Press power button to move on to the next function MM/inch of the VAV terminal box to be select 	MM Inch VAV inlet diameter
4	Cool or heating mode	 Adjustable using "up" and "down" button from "cool" or "Heat" Press power button to move on to the next function 	Cooling or Heating

4.8 Configuring the Airflow Set-points

The airflow set-points are to set the airflow limits for VAV terminal box. The airflow set-points include the following functions:

- 1. Set Max Air flow for cooling mode
- 2. Set Min Air flow for cooling mode
- 3. Set Max Air flow for Heating mode
- 4. Set Min Air flow for Heating mode

NO.	PROCEDURE	DETAIL STEPS	SENSOR DISPLAY
1	Enter Flow parameter configuration	 Use the arrow to "FL.p". Press the power button to select it 	FL. p on screen
2	Set Max Air flow for cooling mode	 Once you press the power button on the "FL. p", you should enter "FL.C" Adjustable using "up" and "down" buttor from 0 to 9999 value Press power button to move on to the next function 	Max Airflow for cooling
3	Set Mom Air flow for cooling mode	 Adjustable using "up" and "down" buttor from 0 to 9999 value Press power button to move on to the next function 	Min Airflow for cooling
4	Set Max Air flow for Heating mode	 Adjustable using "up" and "down" buttor from 0 to 9999 value Press power button to move on to the next function 	Max Airflow for Heating
5	Set Min Air flow for Heating mode	 Adjustable using "up" and "down" buttor from 0 to 9999 value Press power button to move on to the next function 	Min Airflow for Heating

4.9 Configuring the Airflow Testing and Calibration

The airflow testing and calibration is testing of airflow and airflow zero calibration. The airflow testing and calibration include the following functions:

- 1. Set Airflow control setpoint
- 2. View airflow present value
- 3. Set Airflow zeroing calibration

NO.	PROCEDURE	DETAIL STEPS	SENSOR DISPLAY	
1	Enter flow present Value configuration	 Use the arrow to "FL. u". Press the power button to select it the number shown here is the actual airflow value 	FL. 8888 (F	
2	Set Air flow	1 Once you press the power button on the		
-	control setpoint	"FL.u", you should enter "FL.s"	FL .Š	
		 Adjustable using "up" and "down" button from 0 to 9999 value 	Airflow set-point	
		 Press power button to move on to double confirm on the airflow override. Press button after choosing your option 	۶۲ .۳ و	
		1 = Yes	Confirmation of set- point	
		0 = No	I	
3	View Present airflow value	 After confirming the airflow override, this function will let you see the current value of the present airflow 	FL. 88.88 CF	
		2. Press power button to cancel the airflow override and move to next functions	View Present Airflow Value	
4	Flow Zeroing Calibration	 *Please ensure there no airflow before doing this function 	FL.0	
		 Once you press this button, the current value of the airflow will be taken as 0 	Flow Zeroing	
		 Press power button to move on to double confirm on the zeroing process. Press button after choosing your option 		
		1 = Yes		
		0 = No		

4.10 Configuring the Damper Position

The Damper position is used to measure airflow and commissioning. The damper position includes the following functions:

- 1. View current damper position
- 2. Override current damper position

NO.	PROCEDURE	DETAIL STEPS	SENSOR DISPLAY
1	View current Damper	1. Use the arrow to "dAPP". The value shown is the current % of the damper position	188 ^{~~1}
	Position	2. Press the power button to select it	
		3. The number shown here is the damper position in % value	DAFF ON SCIEEN
2	Set Damper position	 Once you press the power button on the "dAPP", you should enter "dAPS" 	188
		2. Adjustable using "up" and "down" button from 0 to 100 value. Value in %	Damper position
		3. Press power button to move on to double confirm on the damper position override. Press button after choosing your option	dRPo 0
		1 = Yes	Confirmation of set-
		0 = No	point
3	View Present Damper position value	 After confirming the damper position override, this function will let you see the current value of the current damper position 	View current Damper
		2. Press power button to cancel the airflow override and move to next functions	Position
		3. Please take note that after this function, ASV305BF7XXXW VAV actuators will move back to its rightful position	

4.11 Calibrating the Sensors

EY-RU305F700XW has built in sensors depends on various models. Temperature sensors for EY-RU305F7001W; Temperature & Humidity sensor for EY-RU305F7002W; Temperature, Humidity & CO2 sensor for EY-RU305F7003W.

- 1. Temperature Calibration
- 2. Humidity Calibration
- 3. CO2 Calibration

NO.	PROCEDURE	DETAIL STEPS	SENSOR DISPLAY
1	Set Temperature calibration	1. Use the arrow to "CALI.IAQ". Once you press the power button on the "CALI.IAQ" you should enter "CALI"	, -0. 2°°
		2. Adjustable using "up" and "down" button from -10 to 10 value	Temp Calibration
		3. Press power button to move on to the nex function	t
2	Set Humidity calibration	 Adjustable using "up" and "down" button from -10 to 10 value Press power button to move on to the nex 	- 2 ' (RU 68
		function	Humidity Calibration
3	Set CO2 calibration	1. Use the arrow to "CAL". The value shown in the current ppm value of the CO2 level	
		 Adjustable using "up" and "down" button to set the desired ppm value 	Current CO2 level
		3. Press power button to double confirm of the CO2 value override	50.2
		1 = Yes	800 1
		0 = No	Confirmation

4.12 Exiting Configuration Mode

After configuration ASV305BF7XXXW VAV controller, you will need to save the setting before exiting the "ADMIN" mode. You can choose to discard your setting by choosing "QUIT" option.

NO.	PROCEDURE	DETAIL STEPS	SENSOR DISPLAY
1		1. Quit discarding all the changes made	e r ≪ qUit
2		1. Quit saving all the changes made	® ™ x SRUE

4.13 Configuring the Instance ID

The Instance ID can be changed via Room Thermostats setting.

NO.	PROCEDURE	DETAIL STEPS	SENSOR DISPLAY
1	Choose Actuator Information	1. Use the arrow to "ACTU". Press the power button to select it	Rctu Actuator info on screen
2	Set Instance ID	 Once you press the power button on the "ACTU", you should enter "B ID" Adjustable using "up" and "down" button from 0 to 9999 value. 	Instance ID on screen
		 Please take note that the instance ID shown at the screen is your current value of Instance ID. 	

5 Cooling or Heating Without Reheat

5.1 Cooling or Heating Without Reheat

THE ASV305BF7XXXW Series controller is configured for single-duct Cooling or Heating VAV control without reheat. Connect the controller as shown below in the illustration.

For Cooling and heating, a duct temperature sensor is recommended for discharge air temperature limiting and automatic changeover.

For more information, please contact us or visit SAUTER-controls.com

5.2 Sequences of Operation

This topic will cover the sequences of operation for our ASV305BF7XXXW series controllers. These sequences of operation are descriptions of each major component of ASV305BF7XXXW programming. They are provided as an aid to understand how our ASV305BF7XXXW controllers work and operate.

5.3 Input Sources

The ASV305BF7XXXW Controllers require specific sensors to measure the room temperature, airflow, and discharge of air temperature. All sensors are pre-program and are automatically detect according to its model specification.

1. EY-RU305F700XW series room thermostats

5.4 EY-RU305F700XW Series Room Thermostats

The EY-RU305F700XW series thermostats are digital wall mount sensors that include room temperature, a digital LCD display and 3 push- button interfaces for entering set-points and configuring the controllers. If an EY-RU305F700XW series room thermostat is detected by our ASV305BF7XXXW VAV controller, the controller will automatically map the room thermostats to its object list. For more information about detailed listing for input and output of object list, please see BACnet object list, page 30 onwards.

The EY-RU305F700XW series room thermostats come with 3 models:

- 1. EY-RU305F7001W LCD Room Unit for ASV305BF7XXXW with Temperature Sensors
- 2. EY-RU305F7002W LCD Room Unit for ASV305BF7XXXW with Temperature and Humidity sensors
- 3. EY-RU305F7003W LCD Room Unit for ASV305BF7XXXW with Temperature, Humidity and Carbon Dioxide senor

6 Room Set points

6.1 Room Set points

There are four temperature set-points each for heating and cooling for a total of 5 set-points.

- 1. Active Set-point
- 2. Occupied cooling
- 3. Unoccupied cooling
- 4. Occupied heating
- 5. Unoccupied heating

6.2 Active Set Point

The active set-point is the current set-point set by the user. The active set-point is determined by the following:

- 1. If space is occupied, the controller will use the occupied mode set-point as the active setpoint
- 2. If an EY-RU305F700XW or NEVR series is connected, the Active set-point will be set via the temperature set-point of the thermostats. The range of adjustment is set b
- 3. If space is unoccupied, the controller will use the unoccupied set-point.

6.3 Occupied

A temperature setpoint entered by the technician during the setup and commissioning of the controller. This set-point is used when the controller is occupied which is determined by the Building Management System, motion sensors or the off/on occupancy button of the Thermostats.

6.4 Unoccupied

A temperature setpoint entered by the technician during the setup and commissioning of the controller. This set-point is used when the system is unoccupied.

6.5 Damper Operation

Damper Movement is determined by comparing the actual airflow reading through the differential pressure and airflow set- points. If the current room temperature is 2 degrees within the temperature set-point, no damper action will be initiated. Once is over the 2-degree Deadband, the damper position will be move and changes.

7 System Integration and Networking

7.1 System Integration and Networking

These topics in this section will cover the integrating the ASV305BF7XXXW VAV controllers into a Building automation network. These are advanced reference topics and are recommended to control for technicians and engineers.

ASV305BF7XXXW VAV controller can be installed as a standalone controller or they can be connected to a BACnet MS/TP network environment. The topics in this section are reference material for technicians or engineers who are planning, installing, commissioning, and setting up a controller that is connected to a network.

In addition to the information in this section, you will also need the following information:

- 1. Detailed plans and drawings for the building automation system.
- 2. Information about the Lan including routers, switches, and network firewalls configuration.
- 3. Sequences of operation for other BACnet Devices that will be monitoring or interacting with our ASV305BF7XXXW VAV actuators.

7.2 Connecting to an MS/TP Network

ASV305BF7XXXW VAV controllers are BACnet MS/TP listed controllers. Connect them only to a BACnet MS/TP network. To enter the BACnet device instance, Mac address and network baud, please see chapter 7.6 and 7.7 page 29.

7.3 Connections and Wiring

Use the following guideline when connecting the controller to an MS/TP network:

- 1. Connect not more than 128 addressable BACnet devices to one MS/TP network. The devices can be any mixes of controllers, router and Building control.
- 2 For best network performance, we suggest limiting the MS/TP network device to be less than 22 controllers.
- 3. Use Twisted pair, shielded cable (22 24 AWG) with capacitance no more than 51 picofarads per foot for all networking wiring in a branch.
- 4. Connect the (-) terminal in parallel with all other (-) terminals.
- 5. Connect the (+) terminal in parallel with all other (+) terminals.
- 6. Connect the shields of the cable together at each midline controllers.

End of line Termination Return Switches

The controllers on the physical ends of each wiring segment must have the end of line termination return switch on for proper network operation.

- 1. For controllers at the end of the networking, set the Terminal Return to "ON"
- 2 For the start or mid of controllers, set the Terminal Return to "OFF"

7.4 Network Bulbs

ASV305BF7XXXW VAV controllers include 3 status bulbs on the left-hand side of the controller. The MS/TP status bulb serves three functions:

- 1. Flashing transmitting of data
- 2. Blue light TX
- 3. Red light RX

If either blue or red light is not flashing, it indicates that the network is not phased correctly. Remove power and check on the networking wiring or power connections.

7.5 Setting Up Networking Communications

Set the network communication settings before connecting the controllers on the network. The setting of the network requires the password to enter which described in the topic above. Please see page 33 object List to change the default password, please take a look at AV41.

There are 3 settings to set before connecting to the MS/TP network:

- 1. BACnet Instance ID
- 2. MAC address
- 3. Baud Rate

7.6 BACnet Instance ID

ASV305BF7XXXW VAV controllers include 3 status bulbs on the left-hand side of the controller. As mention earlier, the BACnet ID can be set via BMS, PC or EY-RU305F700XW series room thermostats. Please see chapter 4.13 page 23 on how to set instance ID on our room thermostats.

SW4 (S3): Terminating Resistor

Factory - set OFF, it is mean to terminating resistor on MS/TP, If S3 ON, it is mean terminating resistor for last device on MS/TP.

SW4 (S4): Changing Direction of Rotation

Factory - set OFF, the direction of rotation is CW.

ON 4 CW/CCW Baud Rate

The direction of rotation can be changed by the CW/CCW switch (Slide 4 of SW4)

	9600 Baud	\$1 (OFF)		19,200 Baud	\$1 (ON)
ON 1 2 3 4			ON 1 2 3 4		
		S2 (OFF)			S2 (OFF)
	38,400 Baud	\$1 (OFF)		76,800 Baud	\$1 (ON)
ON 1 2 3 4			ON 1 2 3 4		
		S2 (ON)			S2 (ON)

7.7 Mac Address

Our mac address can be set directly on top of the ASV305BF7XXXW VAV controller. The address is set via Binary System. Please see the picture below on more information about the MAC Address switch.

Dip Switch 8 (SW8): MAC Address switch Switches 1 - 7: MAC Address

Switches 9: Not in use

8 BACnet Objects List

8.1 TABLE 1: BACNET OBJECT LIST FOR CONTROLLER INPUTS/OUTPUTS

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION	UNIT	OBJECT TYPE	READ/ WRITE	NOTE
A10	Temp	Ai0 for NTC sensor, Digital Input (Dry Contact)	°C	Analog Input (NTC), Digital Input	R	Selected Model only
Al1	ADC	Ail for 0-10VDC	VDC	Analog Input	R	Selected Model only
AI2	NTC	For Knob thermostat NTC temperature sensor (Internal Use)	°C	Analog Input	R	
AI3	VR	For Knob thermostat VR temperature setpoint (Internal Use)	°C	Analog Input	R	
AI12	Air Pressure	For DP sensor (Internal Use)	Ра	Analog Input	R	

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION	UNIT	OBJECT TYPE	READ/ WRITE	NOTE
AI13	Air Flow	For VAV box airflow (Internal Use)	LPS	Analog Input	R	
AO14	AO0	Ao0 For 0-10VDC (Heating Valve Output)	%	Analog Output	RW	Selected Model only
AO15	AO1	Ao1 for 0-10VDC	Vtg	Analog Output	RW	Selected Model only
BI4	Over Current	Actuator DC motor over current (Internal Use)	-	Digital Input	RW	For Calculation of running time
BI5	Over Current	Actuator DC motor over current (Internal Use)	-	Digital Input	RW	For Calculation of running time
BO6	Open Damper	Damper actuator open control (Internal Use)	-	Digital Output	RW	For Calculation of running time
BO7	Close Damper	Damper actuator close	-	Digital Output	RW	For Calculation of running time

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION	UNIT	OBJECT TYPE	READ/ WRITE	NOTE
		control (Internal Use)				
BO8	DO0	DO0 for 24VAC	-	Digital Output	RW	Selected Model only
BO9	DO1	DO1 for 24VAC	-	Digital Output	RW	Selected Model only

8.2 TABLE 2: BACNET OBJECT LIST FOR ANALOG VALUES

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION / RANGE	UNIT	DEFAULT VALUE	REAI MOI WRIT	D/ DBUS Te ID	NOTE
AV0	BACnet device instance number	0-9999	-	1000	R	RO (HMI)	The value in PC configuration software must be divided by 10.
AV1	DDC Program Version	0-999999999	-	-	R	R1	-
AV2	VAV box K factor	0-1000	-	100	RW	R2 (HMI)	-
AV3	VAV box inlet diameter mm	100=4" 125=5" 150=6" 200=8" 250=10" 300=12" 350=14" 400=16"	mm	150	RW	R3 (HMI)	-
AV4	Current VAV airflow	0-9999	lps, Cfm, Cmh	-	R	R4 (HMI)	-
AV5	VAV demand airflow	0-9999	lps, Cfm, Cmh	-	RW	R5	-
AV6	Forced airflow control	0-9999	lps, Cfm, Cmh	-	RW	R6 (HMI)	-
AV7	Cooling maximum airflow	AV8-9999	lps, Cfm, Cmh	30	RW	R7 (HMI)	-
AV8	Cooling minimum airflow	0-AV7	lps, CFM, CMH	10	RW	R8 (HMI)	-
AV9	Heating maximum airflow	AV10-9999	lps, CFM, CMH	30	RW	R9 (HMI)	-

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION / RANGE	UNIT	DEFAULT VALUE	REAI MOD WRIT	D/ DBUS Te <u>ID</u>	NOTE
AV10	Heating minimum airflow	0-AV9	lps, CFM, CMH	10	RW	R10 (HMI)	-
AV11	VAV damper position (0-10)	0-10	-	-	R	R11 (HMI)	Modbus HMI value is 10 times of this value
AV12	VAV damper override position (0-10)	0-10	-	-	RW	R12 (HMI)	-
AV13	Damper actuator travel time	0-999	Sec	-	R	R13	-
AV14	Heating f loating valve travel time	0-999	Sec	50	R	R14	-
AV15	Cooling PID parameter- Kp	0-3276	°C/ °F	(50)	RW	R15	-
AV16	Cooling PID parameter- Ki	0-3276	%/°C	0	RW	R16	-
AV17	Heating PID parameter- Kp	0-3276	°C/ °F	(50)	RW	R17	-
AV18	Heating PID parameter- Ki	0-3276	%/°C	0	RW	R18	-
AV19	Dead band for temperature control	0-3276	°C/ °F	1	RW	R19	-
AV20	HMI Temperature sensor display /Pressure display PA	0-100	°C,Pa	-	R	R20 (HMI)	-
AV21	HMI Humidity sensor display /ID address	0-100	%RH	-	R	R21 (HMI)	For EY- RU305F7002W H and EY- RU305F7003W
AV22	PPM/RPM/Time display select	0-100	-	-	R	R22	For EY- RU305F7003W
AV23	HMI Temperature sensor	0-100	°C/ °F	-	R	R23 (HMI)	-
AV24	HMI Humidity sensor	0-100	%RH	-	R	R24 (HMI)	For EY- RU305F7002W and and EY- RU305F7003W EX-
AV25	HMI CO2 sensor	0-9999	PPM	-	R	R25 (HMI)	For EY- RU305F7003W

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION / RANGE	UNIT	DEFAULT VALUE	READ/ MODBUS WRITE ID		NOTE
AV26	AV26	Not use	-	-	R	R26	
AV27	AV27	Not use	PPM	-	R	R27	
AV28	AV28	Not use	Pa	-	R	R28	
AV29	Airflow display unit select	0=LPS 0.1=CFM 0.2=CMH	-	0.2	RW	R29 (HMI)	-
AV30	Alarm code	No define	-	-	RW	R30	-
AV31	HMI pushbutton lock level	0=No Lock 1=Temp Lock 2=All Lock	-	0	RW	R31 (HMI)	-
AV32	HMI backlight	0-100	-	0	RW	R32	-
AV33	Cooling setpoint	av34-av35	°C/ °F	-	RW	R33 (HMI)	-
AV34	Cooling set point high limit	av35-9999	°C/°F	30	RW	R34 (HMI)	-
AV35	Cooling set point low limit	0-av34	°C/°F	-	RW	R35 (HMI)	-
AV36	set up/dow n step	0.1/0.2/0.5/1	°C/°F	0.5	R	R36	-
AV37	Heating set point	AV39-38	°C/°F	20	RW	R37	-
AV38	Heating set point high limit	AV39-9999	°C/°F	30	RW	R38	-
AV39	Heating set point low limit	0-AV39	°C/°F	0	RW	R39	-
AV40	HMI Version	-	-	-	R	R40	-
AV41	HMI Passw ord	0-199	-	10(HMI 100)	0	R41 (HMI)	Value is mulitply by 10
AV42	HMI Temperature sensor offset	-10~10(0.1)	°C/ °F	0	RW	R42 (HMI)	-
AV43	HMI Humidity sensor offset	-30~30(1)	%RH	0	RW	R43 (HMI)	For EY- RU305F7002W H and EY- RU305F7003W
AV44	AV44	Not use			RW	R44	
AV45	AV45	Not use	-	-	-	R45	-

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION / RANGE	UNIT	DEFAULT VALUE	REAI MOI WRIT	D/ DBUS E ID	NOTE
AV46	CO2 or Termperature set point (for ail set point)	0-3276	-	1000	-	R46	-
AV47	CO2 PID parameter- Kp (for ai1)	0-3276	0	20	R	R47 (HMI)	-
AV48	CO2 PID parameter- Ki (for ai1)	0-3276	-	-	R	R48 (HMI)	-
AV49	CO2 value(for ai1 or HMI CO2)	0-9999	-	-	R	R49	-
AV50	ai1 for 0-10 v (CO2 or Temperature sensor) input	0-10	Vtg	AV51- AV52	R	R50	-
AV51	ai1 for (Co2 sensor or Temperature) input scale min.	0-AV52	PPM	40	RW	R51	-
AV52	ail for (Co2 sensor or Temperature) input scale max.	AV52-9999	PPM	200	RW	R52	-
AV57	Air f Iow PID output	Internal use	-	-	R	R57	-
AV58	Cooling temp setpoint+DB	Internal use	-	-	R	R58	-
AV59	heating temp setpoint- DB	Internal use	-	-	R	R59	-
AV60	Ai0 mode select	0=not use, 1=Occupied, Unoccupied2=NTC thermistor	-	0	R	R60	-
AV61	Current VAV position feedback (0- 100)	0-100	%	-	R	R61	-
AV62	Damper min. position selection	Internal use	Pa	-	R	R62	-
AV63	Cooling set point	Internal use	-	-	R	R63	-
AV64	HMI Temp. display- Fahrenheit	Internal use	°F	-		-	-

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION / RANGE	UNIT	DEFAULT VALUE	REAI MOI WRIT	D/ DBUS TE ID	NOTE
AV65	HMI Temp. setpoint- Fahrenheit	Internal use	°C	-		-	-
AV66	Internal Calculation for AI0/AI1	Internal Calculation for AI0/AI1 10k thermistor or Average Temp	-	-		-	-
AV67	Ai1 mode select	0-7	-	0		-	-
AV68	Actual airflow	Internal Use	LPS	-		-	-
AV69	Heating mode select	0-5	-	0		-	-
AV70	Cooling PID out	0-100	-	-		-	-
AV71	Airflow correction value	Internal Use	-	-	-	-	-
AV72	AV-72	Internal Use	-	-	-	-	-
AV73	Cooling maximum airflow	Internal Use	-	-	R	-	-
AV74	Cooling minimum airflow	Internal Use	-	-	R	-	-
AV75	AV-75	Buffer - Setpoint for airflow PID	-	-	R	-	-
AV76	AV-76	Buffer-Damper Position Calculation stage (1)	-	-	R	-	-
AV77	Airflow PID parameter-Kp	Internal Use	-	(2)	RW	-	-
AV78	Airflow PID parameter-Ki	Internal Use	-	(2)	RW	-	-
AV79	AV-79	Internal Use	-	-	-	-	-
AV80	Damper Override Position	0-100	%	-	R	-	-
AV81	Not Use	Not Use	-	-	RW	-	-
AV82	Not Use	Not Use	-	-	R	-	-

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION / RANGE	UNIT	DEFAULT VALUE	REAI MOI WRI1	D/ DBUS Te ID	NOTE
AV83	AV-83	Buffer-Damper position calculation stage (2)	-	-	R	-	-
AV84	AV-84	Buffer-Damper position calculation stage (3)	-	-	R	-	-
AV85	Override air f Iow control	Override air f low control	lps	-	R	-	-
AV86	Not Use	Not Use	-	-	-	-	-
AV87	Not Use	Not Use	-	-	-	-	-
AV88	Heating PID Output	0-100	%	-	R	-	-
AV89	Heating maximum airflow	Heating maximum airflow	LPS	-	R	-	-
AV90	Heating temp. setpoint	Internal Use	0	-	RW	-	-
AV91	Heating min airflow	Internal Use	lps	-	R	-	-
AV92	AV-92	Buffer- travel time counter A	-	-	RW	-	-
AV93	AV-93	Buffer-cooling demand airflow	-	-	R	-	-
AV94	AV-94	Buffer-heating demand airflow	-	-	R	-	-
AV95	AV-95	Buffer- Damper travel time A	-	-	RW	-	-
AV96	AV-96	Buffer- travel time counter B	-	-	RW	-	-
AV97	AV-97	Buffer- Damper travel time B	-	-	RW	-	-
AV98	AV-98	Buffer- Mode judgment A	-	-	RW	-	-
AV99	AV-99	Buffer- Mode judgment B	-	-	RW	-	-
AV100	AV-100	Buffer- Damper travel time C	-	-	RW	-	-
AV101	AV-101	°C value of cooling setpoint	°C	-	R	-	-
AV102	AV-102	°F value of cooling setpoint	°F	-	R	-	-

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION / RANGE	UNIT	DEFAULT VALUE	REAI MOI WRIT	D/ DBUS Te ID	NOTE
AV103	AV-103	°C value of cooling temp setpoint high limit	°C	-	RW	-	-
AV104	AV-104	°F value of cooling temp setpoint high limit	°F	-	RW	-	-
AV105	AV-105	1 stage heating temp. setpoint	-	-	RW	-	-
AV106	AV-106	°F value of temp set point low limit	°F	-	RW	-	-
AV107	AV-107	°C value of temp set point low limit	°C	-	RW	-	-
AV108	AV-108	2 stage heating temp. setpoint	-	-	RW	-	-
AV109	AV-109	Cooling output for airflow PID calculation	%	-	R	-	-
AV111	AV-111	Setpoint Value for Cooling temperature PID	°C	-	R	-	-
AV112	AV-112	Present Value for Cooling Temperature PID	°C	-	R	-	-
AV113	AV-113	Actual airflow - filtered	LPS	-	R	-	-
AV114	AV-114	Not use	-	-	-	-	-
AV115	AV-115	Counter (0-AV117)	-	-	R	-	-
AV116	AV-116	Not use	-	-	-	-	-
AV117	AV-117	Output sampling 2.2sec	-	2.2	RW	-	-
AV118	Demand VAV Position	VAV position control output, 0- 100	%	-	R	-	-
AV119	AV-119	Counter for DP changes, 0-25	-	-	RW	-	-
AV120	AV-120	Heating f loating output, 0-100	%	-	R	-	-
AV121	VAV Off-min position	0-100	%	20	R	-	BV59 is the mode select for this
AV122	AV-122	Arithmetic Operation (AV75- AV124)	-	-	R	-	-

BACNET OBJECT ID	BACNET OBJECT NAME	DESCRIPTION / RANGE	UNIT	DEFAULT VALUE	READ MOD WRIT	D/ DBUS E ID	NOTE
AV123	AV-123	Arithmetic Operation (AV75+AV124)	-	-	R	-	-
AV124	AV-124	Dead band for air f low control	-	(5)	RW	-	-
AV125	AV-125	Arithmetic Operation Air f Iow unit	LPS	-	R	-	-
AV126	AV-126	Air f low display for HMI	-	-	RW	-	-
AV127	AV-127	Humidity offset for HMI	%	-	RW	-	-

NOTE:

AV object Present value corresponds to MODBUS Holding Register: $av0 \sim av499$ corresponds to 40001~4500, the value is 10 times the symbol integer (Present Value -3276.8~3276.7 correspond to -32768~32767). If AV default value is in (), the value is fixed and can only be changed in DDC programming.

8.3 TABLE 3: BACNET OBJECT LIST FOR BINARY VALUES

BACNET OBJECT ID	BACNET OBJEC	CT NAME		READ/ WRITE	MODBUS ID	NOTE
BVO	Master/Slave Mode,	Slave = 0,Master =1	-	RW	C0	-
BV1	VAV box Occupied/ unoccupied	Unoccupied=0, Occupied=1	-	RW	C1 (HMI)	
BV2	Cool/Heat mode	Cooling = 0,Heating = 1	-	RW	C2 (HMI)	
BV3	HMI Temperature display type_ Present value/ Set point value	Present value=0, Set point value=1	_	RW	C3 (HMI)	
BV4	BV-4	BV-4	-	-	C4	
BV5	Override airflow control	No =0,Yes=1	-	RW	C5 (HMI)	
BV6	Damper override	No =0,Yes=1	-	RW	C6 (HMI)	
BV7	Override VAV airflow	No =0,Yes=1	-	RW	C7 (HMI)	

BACNET OBJECT ID	BACNET OBJEC	BACNET OBJECT NAME			MODBUS ID	NOTE
	zero calibration					
BV8	BV-8	Internal Use	-	-	C8	
BV9	BV-9	Internal Use	-	-	C9	
BV10	No Airflow in main duct	Airflow =0, No Airflow =1	-	R	C10	
BV11	Need low er temp. air for AHU	No =0,Yes=1	-	R	C11	
BV12	Alarm for 90% of the airf low achieve for more than 300 Sec – Cooling Mode	No =0,Yes=1	-	R	C12	
BV13	Alarm for 90% of the airf low achieve for more than 300 Sec – Heating Mode	No =0,Yes=1	-	R	C13	
BV14	BV-14	Internal Use	-	-	C14	
BV15	BV-15	Internal Use	-	-	C15	
BV16	BV-16	Internal Use	-	-	C16	
BV17	BV-17	Internal Use	-	-	C17	
BV18	BV-18	Internal Use	-	-	C18	-
BV19	BV-19	Internal Use	-	-	C19	-
BV20	Alarm icon	No =0,Yes=1	0	RW	C20 (HMI)	-
BV21	Lock icon	No =0,Yes=1	0	R	C21 (HMI)	-
BV22	Valve icon	No =0,Yes=1	0	RW	C22 (HMI)	-
BV23	Cooling icon	No =0,Yes=1	1	R	C23 (HMI)	-

BACNET OBJECT ID	BACNET OBJEC	CT NAME		READ/ WRITE	MODBUS ID	NOTE
BV24	Heating icon	No =0,Yes=1	0	R	C24 (HMI)	-
BV25	Fan Icon	No =0,Yes=1	0	RW	C25 (HMI)	-
BV26	Sleep Icon	No =0,Yes=1	0	RW	C26 (HMI)	-
BV27	Unoccupied Icon	No =0,Yes=1	0	R	C27 (HMI)	-
BV28	Tool Icon	No =0,Yes=1	0	RW	C28 (HMI)	-
BV29	Sending / Calculating Icon	No =0,Yes=1	0	R	C29 (HMI)	-
BV30	ON/OFF icon	No =0,Yes=1	0	R	C30 (HMI)	-
BV31	Button pressed (alarm reset)	No =0,Yes=1	-	-	C31 (HMI)	-
BV32	ON/OFF control status	Off =0, On=1	-	RW	C32 (HMI)	-
BV33	ON/OFF is allow ed	Allow =0, Prohibit=1	0	R	C33 (HMI)	-
BV34	HMI Temperature setting is allow ed	Allow =0, Prohibit=1	0	R	C34 (HMI)	-
BV35	BV-35	HMI humidity setting is allow ed, Allow =0, Prohibit=1	0	RW	C35 (HMI)	For EY- RU305F7002W
BV36	BV-36	HMI CO2 setting is allow ed, Allow=0, Prohibit=1	0	RW	C36 (HMI)	For EY- RU305F7003W
BV37	BV-37	HMI pressure setting is allow ed, Allow =0,Prohibit=1	0	RW	C37 (HMI)	-
BV38	Deg C/F Unit display select	DegC=0,DegF=1	0	RW	C38 (HMI)	-
BV39	Deg/Pa display select	Deg=0, Pa=1	0	RW	C39 (HMI)	-
BV40	24hr/12hr time mode select	24 hr=0,12 hr=1	0	RW	C40 (HMI)	-
BV41	Humidity display	No =0,Yes=1	0	R	C41 (HMI)	For EY- RU305F7002W
BV42	ID address display	No =0,Yes=1	0	RW	C42 (HMI)	-

BACNET OBJECT ID	BACNET OBJEC			READ/ WRITE	MODBUS ID	NOTE
BV43	Clock display	No =0,Yes=1	0	RW	C43 (HMI)	-
BV44	PPM display	No =0,Yes=1	0	R	C44 (HMI)	For EY- RU305F7003W
BV45	RPM display	No =0,Yes=1	0	RW	C45 (HMI)	-
BV46	BV-46	Internal Use	-	-	C46	-
BV47	BV-47	Internal Use	-	-	C47	-
BV48	BV-48	Internal Use	-	-	C48	-
BV49	CO2 control	0=ai1 co2 sensor, 1=HMI co2 sensor	0	-	C49	-
BV50	BV-50	Internal Use	-	-	C50	-
BV51	VAV/CAV mode select	0=VAV,1=CAV	0	-	C51	-
BV52	BV-52	Arithmetic Operation-Off delay 160 sec after BV55	-	-	C52	-
BV53	BV-53	Arithmetic Operation- BV104 & & !BV52	-	-	C53	-
BV54	BV-54	Arithmetic Operation- AV113 is within AV122~AV123	-	-	C54	-
BV55	BV-55	Arithmetic Operation- On delay 5sec after BO54	-	-	C55	-
BV56	BV-56	Arithmetic Operation- BV62 & BV38	-	-	C56	-
BV57	BV-57	Arithmetic Operation- AV33 changes>.1	-	-	C57	-
BV58	BV-58	Arithmetic Operation- AV34 changes>.1	-	-	C58	-
BV59	Pow er off min open/min f low select	0 min VAV open position,1 Vmin	0	-	C59	-
BV60	Ai1control mode disable/ enable 0- 10VDC	0 Disable,1 Enable.	0	-	C60	
BV61	BV-61	Arithmetic Operation- AV35 changes>.1	-	-	C61	-

BACNET OBJECT ID	BACNET OBJEC	CT NAME		READ/ WRITE	MODBUS ID	NOTE
BV62	BV-62	Arithmetic Operation- BV57 or BV58 or BV61	-	-	C62	-
BV63	BV-63	Damper end position, No =0,Yes=1	-	-	C63	-
BV64	BV-64	Arithmetic Operation- one shot BV63	-	-	-	-
BV65	BV-65	Not use	-	-	-	-
BV66	BV-66	Arithmetic Operation- one shot BV63	-	-	-	-
BV67	BV-67	Arithmetic Operation- CounterCountCompletion of BO6 once per 5000 sec	-	-	-	-
BV68	BV-68	Arithmetic Operation- AV98=1	-	-	-	-
BV69	BV-69	Arithmetic Operation- one shot BO6	-	-	-	-
BV70	BV-70	Arithmetic Operation- BV68 or BV80	-	-	-	-
BV71	BV-71	Arithmetic Operation- Ondelay 1sec after BO7	-	-	-	-
BV72	BV-72	Arithmetic Operation- V95>2	-	-	-	-
BV73	BV-73	Arithmetic Operation- AV99=1	-	-	-	-
BV74	BV-74	Arithmetic Operation- BV73 & BV71	-	-	-	-
BV75	BV-75	Arithmetic Operation-Off delay 160 sec after Initial	-	-	-	-
BV76	BV-76	Arithmetic Operation- one shot bv63	-	-	-	-
BV77	BV-77	Arithmetic Operation- CounterCountCompletion of BO7 once per 5000 sec	-	-	-	-
BV78	BV-78	Arithmetic Operation- AV99 is not equal to 1	-	-	-	-
BV79	BV-79	Arithmetic Operation- one shot BO7	-	-	-	-
BV80	BV-80	Arithmetic Operation- BV71 & BV78	-	-	-	-
BV81	BV-81	Not use	-	-	-	-
BV82	BV-82	Not use	-	-	-	-

BACNET OBJECT ID	BACNET OBJEC	BACNET OBJECT NAME				NOTE
BV83	BV-83	Not use	-	-	-	-
BV84	BV-84	Arithmetic Operation- BV101 or BV32	-	-	-	-
BV85	BV-85	Arithmetic Operation- one shot BV89	-	-	-	-
BV86	BV-86	Arithmetic Operation- one shot BV27	-	-	-	-
BV87	BV-87	Arithmetic Operation- BV2 & BV84	-	-	-	-
BV88	BV-88	Arithmetic Operation-!BV2 & BV84	-	-	-	-
BV89	BV-89	Arithmetic Operation- BV83+BV81	-	-	-	-
BV90	BV-90	Internal Use	-	-	-	-
BV91	BV-91	Internal Use	-	-	-	-
BV92	BV-92	Internal Use	-	-	-	-
BV93	BV-93	Internal Use	-	-	-	-
BV94	BV-94	Internal Use	-	-	-	-
BV95	BV-95	Internal Use	-	-	-	-
BV96	BV-96	Internal Use	-	-	-	-
BV97	BV-97	Internal Use	-	-	-	-
BV98	BV-98	Internal Use	-	-	-	-
BV99	BV-99	Internal Use	-	-	-	-
BV100	BV-100	Internal Use	-	-	-	-
BV101	BV-101	Internal Use	-	-	-	-
BV102	BV-102	Internal Use	-	-	-	-
BV103	BV-103	Arithmetic Operation-one shot BV7	-	-	-	-
BV104	BV-104	Arithmetic Operation- CounterCountCompletion	-	-	-	-

BACNET OBJECT ID	BACNET OBJECT NAME			READ/ WRITE	MODBUS ID	NOTE
		of BV105 once per AV117 sec				
BV105	BV-105	Arithmetic Operation- Counter Start Initial=1	-	-	-	-
BV106	BV-106	Arithmetic Operation-Al12 changes>2	-	-	-	-
BV107	BV-107	Arithmetic Operation-one shot BV106	-	-	-	-
BV108	BV-108	Arithmetic Operation- BV107 changes count>25	-	-	-	-
BV109	BV-109	Arithmetic Operation- AV75 changes>2	-	-	-	-
BV110	BV-110	Arithmetic Operation- AV68 is w tihin 0~10	-	-	-	-
BV111	BV-111	Arithmetic Operation- BV103 & BV110	-	-	-	-
BV112	BV-112	Internal Use	-	-	-	-
BV113	Stage 1 Heating	Internal use,Not active = 0, Active = 1	-	-	-	-
BV114	Stage 2 Heating	Internal useNot active = 0 Active = 1	-	-	-	-
BV115	BV-115	Internal use	-	-	-	-
BV116	BV-116	Internal use	-	-	-	-
BV117	BV-117	Internal use	-	-	-	-
BV118	Stage 3 Heating	Internal use,Not active = 0 Active = 1	-	-	-	-
BV119	Stage heating Bo8	Off = 0, On = 1,Active Bo8 after 60 sec when "On"	-	-	-	-
BV120	Stage heating Bo9	Off = 0, On = 1,Active Bo9 after 60 sec when "On"	-	-	-	-
BV121	BV-121	Need low er temp. air for AHU (no delay)	-	-	-	-
BV122	BV-122	Need higher temp. air for AHU (no delay)	-	-	-	-
BV123	BV-123	Not use	-	-	-	-
BV124	BV-124	Need more air volume for AHU (no delay)	-	-	-	-

BACNET OBJECT ID	BACNET OBJECT NAME			READ/ WRITE	MODBUS ID	NOTE
BV125	BV-125	Not use	-	-	-	-
BV126	BV-126	Not use	-	-	-	-
BV127	BV-127	Internal Use	-	-	-	-