VKAI: 2-Wege-Absperrkugelhahn mit Innengewinde, PN 40

Ihr Vorteil für mehr Energieeffizienz

Präzises Absperren mit geringer Leckage, das ist Effizienz

Eigenschaften

- · 2-Wege-Absperrkugelhahn zur Anwendung in geschlossenen Kreisläufen in Heizungs-, Lüftungsund Klimaanlagen
- Zusammen mit den Ventilantrieben AKM 105(S), 115(S) und AKF 112, 113(S) als Absperrgerät und als Stellgerät für 2-Punkt-Regelungen
- Schnelle Umschaltung in 6 s mit dem Ventilantrieb AKM115SF152
- · Niedriges Drehmoment mittels O-Ring-gelagerter Manschette
- Kugelhahn mit Innengewinde nach ISO 7/1 Rp
- · Körper aus entzinkungsbeständigem Messingguss
- · Kugel aus entzinkungsbeständigem Messing, verchromt und mit polierter Oberfläche
- · Schmutzfänger und Verschraubung als Zubehör erhältlich
- · Wasserbeschaffenheit nach VDI 2035
- Französische Trinkwasserzulassung ACS

Technische Daten

Kenngrössen		
	Nenndruck	40 bar
	Leckrate	0,0001 x K _{vs} -Wert
	Drehwinkel	90°
Umgebungsbedingungen		
	Betriebstemperatur ¹⁾	-10130 °C ohne Kondensation
	Betriebsdruck	40 bar (-1050 °C)
		35 bar (130 °C)

Typenübersicht				
Тур	Nennweite (DN)	Anschluss ISO 7/1 Rp	K _{vs} -Wert	Gewicht
VKAI015F300	DN 15	Rp ½"	15 m ³ /h	0,275 kg
VKAI020F300	DN 20	Rp 3/4"	22 m ³ /h	0,37 kg
VKAI025F300	DN 25	Rp 1"	22 m ³ /h	0,456 kg
VKAI032F300	DN 32	Rp 11/4"	35 m ³ /h	0,7 kg
VKAI040F300	DN 40	Rp 1½"	68 m ³ /h	1,12 kg
VKAI050F300	DN 50	Rp 2"	96 m ³ /h	1,75 kg

Zubehör	
Тур	Beschreibung
0510240001	Montagekit für Kugelhähne VK**/BK** als Ersatzteil und als Zubehör für Drehantriebe ASF 112, 113 ab Index B
0510240011	Zwischenstück erforderlich bei Mediumstemperatur < 5 °C
0510420001	Zwischenstück erforderlich bei Mediumstemperatur > 100 °C
0560283015	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 15
0560283020	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 20
0560283025	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 25
0560283032	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 32
0560283040	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 40
0560283050	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 50
0560332015	Schmutzfänger aus Rotguss, –10150 °C, Maschenweite 0,5 mm, DN 15
0560332020	Schmutzfänger aus Rotguss, -10150 °C, Maschenweite 0,8 mm, DN 20
0560332025	Schmutzfänger aus Rotguss, -10150 °C, Maschenweite 0,8 mm, DN 25
0560332032	Schmutzfänger aus Rotguss, –10150 °C, Maschenweite 0,8 mm, DN 32

¹⁾ Bei Betriebstemperaturen unter < 5 °C und > 100 °C muss das entsprechende Zubehör verwendet werden.

VKAI040F300

 \bowtie

Тур	Beschreibung
0560332040	Schmutzfänger aus Rotguss, -10150 °C, Maschenweite 0,8 mm, DN 40
0560332050	Schmutzfänger aus Rotguss, -10150 °C, Maschenweite 0,8 mm, DN 50

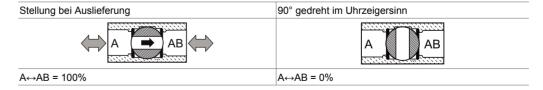
Kombination VKAI mit elektrischen Antrieben

- i Garantieleistung: Die angegebenen technischen Daten und Druckdifferenzen sind nur in Kombination mit SAUTER Ventilantrieben zutreffend. Mit der Verwendung von Ventilantrieben sonstiger Hersteller erlischt jegliche Garantieleistung.
- i Definition für ∆p_{max}: Max. zul- Druckabfall im Regelbetrieb, bei der der Antrieb den Kugelhahn sicher öffnet und schliesst.

Antrieb	AKM105F100	AKM105F120	AKM105F122	AKM105SF132	AKM115F120	AKM115F122	AKM115SF132	AKM115SF152
Drehmoment	4 Nm	4 Nm	4 Nm	4 Nm	8 Nm	8 Nm	8 Nm	7 Nm
Steuersignal	2-/3-Pt.	2-/3-Pt.	2-/3-Pt.	2-/3-Pt., 010 V	2-/3-Pt.	2-/3-Pt.	2-/3- Pt., 010 V	2-/3-Pt., 010 V, 420 mA
Laufzeit	30 s	120 s	120 s	35/60/120 s	120 s	120 s	35/60/120 s	6 s
Betriebsspan- nung	230 V~	230 V~	24 V~	24 V~/V=	230 V~	24 V~	24 V~/V=	24 V~/V=

Δp [bar]

	∆p _{max}	Δp_{max}						
VKAI015F300 VKAI020F300 VKAI025F300	1,8	1,8	1,8	1,8	3,5	3,5	3,5	3,5
VKAI032F300 VKAI040F300 VKAI050F300	1,2	1,2	1,2	1,2	2,4	2,4	2,4	2,4


Antrieb	AKF112F120	AKF112F122	AKF113F122	AKF113SF122
Drehmoment	7 Nm	7 Nm	7 Nm	7 Nm
Steuersignal	2-Pt.	2-Pt.	3-Pt.	010 V
Laufzeit	90 s	90 s	90 s	90 s
Betriebsspan- nung	230 V~	24 V~/V=	24 V~/V=	24 V~/V=

∆p [bar]

	Δp_{max}	Δp_{S}	Δ p _{max}	Δp_{s}	∆p _{max}	Δp_{S}	∆p _{max}	Δp_s
VKAI015F300 VKAI020F300 VKAI025F300	3,5	5,4	3,5	5,4	3,5	5,4	3,5	5,4
VKAI032F300 VKAI040F300 VKAI050F300	2,4	5,4	2,4	5,4	2,4	5,4	2,4	5,4

Funktionsbeschreibung

Der 2-Wege-Absperrkugelhahn wird mit einem elektrischen Antrieb von einer Stellung in die andere gesteuert.

Diese 2-Wege-Absperrkugelhähne zeichnen sich durch hohe Zuverlässigkeit und Präzision aus und leisten einen wichtigen Beitrag zur umweltfreundlichen Regelung. Sie erfüllen anspruchsvolle Anforderungen wie Schnellschliessfunktion, Differenzdrücke bewältigen, Mediumstemperatur regeln, Absperrfunktion erfüllen und dies alles in geräuscharmer Form.

Die Spindel des Kugelhahns wird mit dem Achsmitnehmer des Antriebs automatisch verbunden. Die Dichtheit der Kugel wird durch im Körper eingelegte PTFE-Manschetten gewährleistet. Hinter diese beiden Manschetten ist ein EPDM O-Ring eingelegt. Diese O-Ringe erlauben der Kugel und beider

Manschetten eine kleine axiale Bewegung, was eine hohe Dichtheit und kleine Drehmomente ermöglicht.

Die Dichtheit der Spindel wird durch zwei O-Ringe gewährleistet.

Bestimmungsgemässe Verwendung

Dieses Produkt ist nur für den vom Hersteller vorgesehenen Verwendungszweck bestimmt, der in dem Abschnitt «Funktionsbeschreibung» beschrieben ist.

Hierzu zählt auch die Beachtung aller zugehörigen Produktvorschriften. Änderungen oder Umbauten sind nicht zulässig.

Projektierungs- und Montagehinweise

Die 2-Wege-Absperrkugelhahn werden mit Drehantrieben mit oder ohne Federrückzug kombiniert. Der Antrieb wird direkt auf den Kugelhahn aufgesteckt und mit einem Bajonettverschluss gehalten. Die Verbindung der Antriebsachse mit der Spindel erfolgt automatisch, dazu soll die Achse des Kugelhahns in einer Zwischenposition stehen. Bei der ersten Inbetriebnahme der Anlage fährt der SUT-Antrieb in die Endstellung und die beiden Geräte werden automatisch verbunden. Der Drehwinkel des Kugelhahns wird ebenfalls vom Antrieb detektiert und es sind keine weiteren Einstellungen nötig. Um ein Blockieren des Kugelhahns in den Endstellungen zu vermeiden, wird der SUT-Antrieb eine Bewegung von ca. 30° Drehwinkel vornehmen, wenn sich das Stellsignal innerhalb 3 Tagen in den Endstellungen nicht geändert hat.

Damit Verunreinigungen im Wasser (z. B. Schweissperlen, Rostpartikel usw.) zurückgehalten werden und die PTFE-Manschette nicht beschädigt wird, ist der Einbau von Schmutzfängern z. B. pro Stockwerk oder Strang zu empfehlen. Schmutzfilter siehe Zubehör, je nach Typ auf Einsatz und Temperaturbereich achten. Anforderungen an die Wasserbeschaffenheit entsprechend VDI 2035. Alle Kugelhähne dürfen nur in geschlossenen Kreisläufen eingesetzt werden. Bei offenen Kreisläufen kann eine zu hohe Sauerstoffmischung die Kugelhähne zerstören. Um dies zu vermeiden, ist ein Sauerstoffbindemittel zu verwenden; dabei ist bezüglich Korrosion die Kompatibilität mit dem Hersteller der Lösung abzuklären. Dazu kann die weiter unten aufgeführte Materialliste verwendet werden. In den Anlagen werden meistens die Armaturen isoliert. Dabei ist jedoch zu beachten, dass der Flansch zur Aufnahme des Antriebs nicht isoliert wird.

Damit in ruhigen Räumen kein störendes Strömungsgeräusch hörbar wird, darf die Druckdifferenz über dem Kugelhahn 50% der angegebenen Werte nicht überschreiten.

Die Handkurbel ist auf den Antrieben AKM fest montiert. Zur Betätigung dieser Handkurbel muss der Handverstellungsknopf am Antrieb nach unten geschoben werden. Der Antrieb bleibt betriebslos solange dieser Knopf nicht wieder in die obere Stellung geschoben wird. An der Handkurbel ist auch ein Vierkant vorhanden, passend zum Vierkant der Spindel des Kugelhahns.

Zusätzliche technische Daten

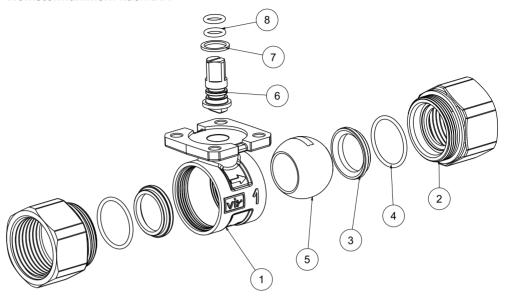
Technische Information	
Druck- und Temperaturangaben	EN 764, EN 1333
Strömungstechnische Kenngrössen	EN 60534, Seite 3
Technisches Handbuch «Stellgeräte»	7000477001
Kenngrössen, Installationshinweise, Regelung, Allgemeines	Gültige EN-, DIN- und AD-Normen, TRD-Regeln und UVV-Vorschriften
CE-Konformität DGRL 2014/68/EU	Fluidgruppe II, kein CE-Kennzeichen

Anwendung mit Wasser

Bei Verwendung von Wasser, gemischt mit Glykol oder Inhibitor, soll zur Sicherheit die Kompatibilität der im Kugelhahn vorhandenen Materialien und Dichtungen mit dem Hersteller der Lösung abgeklärt werden.

Dazu kann die in der Material- und Umweltdeklaration MD 56.096 aufgeführte Materialliste verwendet werden. Wir empfehlen, dass bei Verwendung von Glykol die Konzentration zwischen 20% und 50% auszuwählen ist.

Die Kugelhähne sind für Ex-Zonen nicht geeignet. Die Kugelhähne haben die französische Trinkwasserzulassung ACS.


Montagelage

Das Stellgerät kann in beliebiger Lage montiert werden, jedoch wird die hängende Montagelage nicht empfohlen. Eindringendes Kondensat, Tropfwasser usw. in den Antrieb ist zu verhindern.

Zusätzliche Angabe zur Ausführung

Körper des Kugelhahns ist aus DZR Pressmessing (EN 12165) mit Innengewinde zylindrisch nach ISO 7/1 Rp. Spindeldichtung mit doppeltem O-Ring aus Ethylen-Propylen.

Werkstoffnummern nach DIN

	DIN-Werkstoffnr.	DIN-Bezeichnung
(1) Körper des Kugelhahns	CW602N	CuZn36Pb2As
(2) Anschlussstutzen	CW602N	CuZn36Pb2As
(3) Manschette	PTFE	
(4) O-Ring	EPDM	
(5) Kugel, poliert, verchromt	CW602N	CuZn36Pb2As
(6) Achse	CW602N	CuZn36Pb2As
(7) Reibring	PTFE/Bronze/MoS2	
(8) O-Ring	EPDM	

Erweiterte Angaben zu den Definitionen Druckdifferenz

Δp_v :

Max. zul. Druckdifferenz über dem Kugelhahn bei jedem Drehwinkel, begrenzt durch Geräuschpegel und Erosion.

Mit dieser Kenngrösse wird der Kugelhahn als durchströmtes Element spezifisch in seinem hydraulischen Verhalten charakterisiert. Durch die Überwachung der Kavitation und Erosion und der damit verbundenen Geräuschbildung wird sowohl die Lebensdauer als auch die Einsatzfähigkeit verbessert.

Δp_{max} :

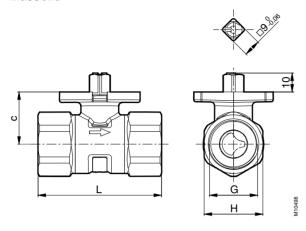
Max. zul. Druckdifferenz über dem Kugelhahn, bei der der Antrieb den Kugelhahn sicher öffnen und schliessen kann.

Berücksichtigt sind: Statischer Druck und strömungstechnische Einflüsse. Mit diesem Wert ist eine störungsfreie Drehbewegung und Dichtheit gewährleistet. Dabei wird in keinem Fall der Wert Δp_v des Kugelhahns überschritten.

Δp_s :

Max. zul. Druckdifferenz über dem Kugelhahn im Störungsfall (z. B. Spannungsausfall, Temperaturund Drucküberhöhung, sowie Rohrbruch) bei der der Antrieb den Kugelhahn dicht schliessen und gegebenenfalls den ganzen Betriebsdruck gegen den Atmosphärendruck halten kann. Da es sich hier um eine Schnellschliessfunktion mit «schneller Drehwinkeländerung» Hubdurchgang handelt, kann Δp_s grösser als Δp_{max} bzw. Δp_v sein. Die hier entstehenden strömungstechnischen Störeinwirkungen werden schnell durchfahren und sind bei dieser Funktionsweise von untergeordneter Bedeutung.

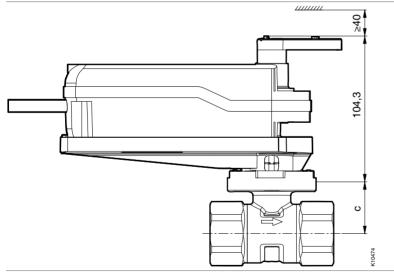
Δp_{stat} :

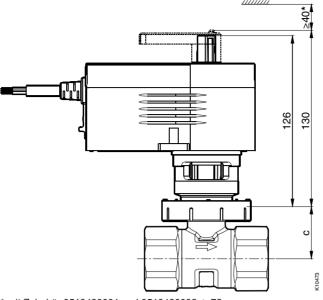

Leitungsdruck hinter dem Kugelhahn. Entspricht im Wesentlichen dem Ruhedruck bei abgeschalteter Pumpe, z. B. hervorgerufen durch Flüssigkeitshöhe der Anlage, Druckzunahme durch Druckspeicher, Dampfdruck usw.

Entsorgung

Bei einer Entsorgung ist die örtliche und aktuell gültige Gesetzgebung zu beachten.

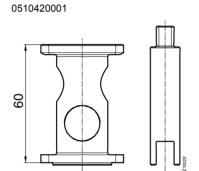
Weitere Hinweise zu Material und Werkstoffen entnehmen Sie bitte der Material- und Umweltdeklaration zu diesem Produkt.

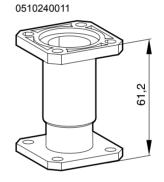

Massbild

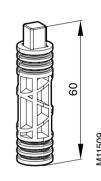

DN	С	G	L	Н
	mm	inch	mm	mm
15	28	Rp ½	62	26
20	31	Rp ¾	67	31
25	31	Rp 1	77	39
32	35	Rp 1¼	88	48
40	40	Rp 1½	102	55
50	53	Rp 2	117	67

Kombination

AKF 112, 113(S)




AKM 105, 115(S)



* mit Zubehör 0510480001 und 0510480002: ≥ 72 mm

Zubehör

60332 0	DN	b mm	c mm	G inch (ISO 228-1)	L mm	H mm
	15	12	38	G 1/2	54	27
	20	15	43	G 3/4	67	34
	25	16	53	G 1	79	41
	32	17	64	G 1¼	98	51
	40	18	70	G 1½	106	57
b b G	50	20	85	G 2	122	69

0560283 0	DN				G2 inch (ISO 228-1)	L mm		H2 mm
b1 b2 b2 55 b2	15	10	10	Rp ½ (ISO 7/1)	G ½	46	26	30
	20	12	12	Rp ¾ (ISO 7/1)	G ¾	52	31	37
	25	14	14	Rp 1 (ISO 7/1)	G 1	60	40	46
	32	16	16	G 1¼ (ISO 228-1)	G 1¼	65	50	54
	40	17	17	G 1½ (ISO 228-1)	G 1½	76	54	64
	50	20	20	G 2 (ISO 228-1)	G 2	98	69	81