VKR: 2-Wege-Regelkugelhahn mit Innengewinde, PN 40

Ihr Vorteil für mehr Energieeffizienz

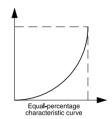
Präzises Regeln und Arbeiten mit geringer Leckage, das ist Effizienz

Eigenschaften

- 2-Wege-Regelkugelhahn für stetige Regelung von Kalt- und Warmwasser in geschlossenen Kreisläufen
- Zusammen mit den Ventilantrieben AKM 105(S), 115(S) und AKF 112, 113(S) als Stellgerät
- Kugelhahnkennlinie gleichprozentig; Regelkontur in der Kugel direkt integriert
- Kennlinie einstellbar mit SUT-Drehantrieb (SAUTER Universal Technologie) auf linear oder quadratisch
- · Spindel mit grosser Gleitfläche und PTFE-Gleitring
- Niedriges Drehmoment mittels O-Ring-gelagerter Manschette
- Kugelhahn mit Innengewinde nach ISO 7/1 Rp oder NPT
- · Körper aus Dezincification Resistant (DZR) Messingguss
- · Spindel aus DZR-Messing mit PTFE-Gleitring
- · Kugel aus DZR-Messing, verchromt und polierter Oberfläche
- · Achsenabdichtung mit doppeltem O-Ring aus EPDM
- Schmutzfänger und Verschraubung als Zubehör erhältlich
- · Wasserbeschaffenheit nach VDI 2035
- · Französische Trinkwasserzulassung ACS

Technische Daten

Kenngrössen


rteringrosseri						
		Nenn	druck		40 bar	
		Ventil	kennlinie	Gleichprozentig		
		Stellverhältnis Kugelhahn			500:1	
			erhältnis mit Antrieb		> 50:1	
		Leckrate			0,001% vom K _{vs} -Wert	
		Drehv	vinkel		90°	
Umgebungsbeding	gungen					
omgobangoboam,	gangon	Betrie	ebstemperatur ¹⁾		–10130 °C ohne Kondensation	
		Betrie	bsdruck		40 bar (–1050 °C)	
					35 bar (130 °C)	
Normen, Richtlinie	en	Druck	- und Temperaturanga	hen	EN 764 EN 1333	
			ungstechnische Kenn		EN 764, EN 1333	
		Juon	iungsteoninisone Kenn	yı uss c	EN 60534 (Seite 3)	
Typenübersicht						
Тур	Nennweite	A	Anschluss ISO 7/1 Rp	K _{vs} -Wert	Gewicht	
VKR015F350-FF	DN 15	F	Rp ½"	1 m³/h	0,29 kg	
VKR015F340-FF	DN 15	F	Rp ½"	1,6 m³/h	0,29 kg	
VKR015F330-FF	DN 15	F	Rp ½"	2,5 m³/h	0,29 kg	
VKR015F320-FF	DN 15	F	Rp ½"	4 m³/h	0,29 kg	
VKR015F310-FF	DN 15	F	Rp ½"	6,3 m³/h	0,29 kg	
VKR015F300-FF	DN 15	F	Rp ½"	10 m³/h	0,29 kg	
VKR020F320-FF	DN 20	F	Rp ¾"	4 m³/h	0,32 kg	
VKR020F310-FF	DN 20	F	Rp ¾"	6,3 m³/h	0,32 kg	
VKR020F300-FF	DN 20	F	Rp ¾"	10 m³/h	0,32 kg	
VKR025F320-FF	DN 25	F	Rp 1"	6,3 m³/h	0,49 kg	
VKR025F310-FF	DN 25	F	Rp 1"	10 m³/h	0,49 kg	
VKR025F300-FF	DN 25	F	Rp 1"	16 m³/h	0,49 kg	
VKR032F320-FF	DN 32	F	Rp 1¼"	10 m³/h	0,73 kg	
	DN 32		Rp 11/4"	16 m³/h	0,73 kg	

Bei Betriebstemperaturen unter < 5 °C und > 100 °C muss das entsprechende Zubehör verwendet werden.

VKR040F300

Тур	Nennweite	Anschluss ISO 7/1 Rp	K _{vs} -Wert	Gewicht
VKR032F300-FF	DN 32	Rp 11/4"	25 m³/h	0,73 kg
VKR040F320-FF	DN 40	Rp 1½"	16 m³/h	1,1 kg
VKR040F310-FF	DN 40	Rp 1½"	25 m³/h	1,1 kg
VKR040F300-FF	DN 40	Rp 1½"	40 m³/h	1,1 kg
VKR050F320-FF	DN 50	Rp 2"	25 m³/h	1,76 kg
VKR050F310-FF	DN 50	Rp 2"	40 m³/h	1,76 kg
VKR050F300-FF	DN 50	Rp 2"	63 m³/h	1,76 kg

Zubehör	
Тур	Beschreibung
0510240001	Montagekit für Kugelhähne VK**/BK** als Ersatzteil und als Zubehör für Drehantriebe ASF 112, 113 ab Index B
0510240011	Zwischenstück erforderlich bei Mediumstemperatur < 5 °C
0510420001	Zwischenstück erforderlich bei Mediumstemperatur > 100 °C
0560283015	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 15
0560283020	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 20
0560283025	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 25
0560283032	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 32
0560283040	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 40
0560283050	1 Verschraubung aus Messing flach dichtend, Innen-/Aussengewinde für DN 50
0560332015	Schmutzfänger aus Rotguss, –10…150 °C, Maschenweite 0,5 mm, DN 15
0560332020	Schmutzfänger aus Rotguss, –10…150 °C, Maschenweite 0,8 mm, DN 20
0560332025	Schmutzfänger aus Rotguss, –10…150 °C, Maschenweite 0,8 mm, DN 25
0560332032	Schmutzfänger aus Rotguss, –10150 °C, Maschenweite 0,8 mm, DN 32
0560332040	Schmutzfänger aus Rotguss, –10…150 °C, Maschenweite 0,8 mm, DN 40
0560332050	Schmutzfänger aus Rotguss, -10150 °C, Maschenweite 0,8 mm, DN 50

Kombination VKR mit elektrischen Antrieben

- i Garantieleistung: Die angegebenen technischen Daten und Druckdifferenzen sind nur in Kombination mit SAUTER Ventilantrieben zutreffend. Mit der Verwendung von Ventilantrieben sonstiger Hersteller erlischt jegliche Garantieleistung.
- i Definition für ∆p s: Max. zul. Druckabfall im Störungsfall (Rohrbruch nach Kugelhahn), bei der der Antrieb den Kugelhahn mit Hilfe der Rückstellfeder sicher schliesst.
- i Definition für ∆p max: Max. zul. Druckabfall im Regelbetrieb, bei der der Antrieb den Kugelhahn sicher öffnet und schliesst.

Druckdifferenzen

Antrieb	AKM105F100 AKM105F120	AKM105F122	AKM105SF132	AKM115F120	AKM115F122	AKM115SF132	AKM115SF152
Drehmoment	4 Nm	4 Nm	4 Nm	8 Nm	8 Nm	8 Nm	7 Nm
Steuersignal	2-/3-Pt.	2-/3-Pt.	2-/3-Pt., 010 V	2-/3-Pt.	2-/3-Pt.	2-/3-Pt., 010 V	2-/3-Pt., 010 V, 420 mA
Laufzeit	30/120 s	30/120 s	35/60/120 s	120 s	120 s	35/60/120 s	6 s
Betriebsspan- nung	230 V~	24 V~	24 V~/V=	230 V~	24 V~	24 V~/V=	24 V~/V=

∆p [bar]

Gegen den Druck schlies- send	Δ p _{max}	∆р _{тах}	∆р _{тах}	Δ p _{max}	Δp _{max}	∆р _{тах}	Δp _{max}	
VKR015F350-FF VKR015F340-FF VKR015F320-FF VKR015F310-FF VKR015F300-FF VKR020F320-FF VKR020F310-FF VKR020F300-FF VKR025F320-FF VKR025F320-FF VKR025F310-FF VKR025F310-FF	1,8	1,8	1,8	3,5	3,5	3,5	3,5	
VKR032F320-FF VKR032F310-FF VKR032F300-FF VKR040F320-FF VKR040F310-FF VKR050F320-FF VKR050F310-FF VKR050F300-FF	1,2	1,2 1,2 2,4		2,4	2,4	2,4	2,4	

Mit dem Druck schliessend nicht anwendbar

Antrieb	AKF112F120	AKF112F122	AKF113F122	AKF113SF122
Drehmoment	7 Nm	7 Nm	7 Nm	7 Nm
Steuersignal	2-Pt.	2-Pt.	3-Pt.	010 V
Laufzeit	90 s	90 s	90 s	90 s
Betriebsspan- nung	230 V~	24 V~/V=	24 V~/V=	24 V~/V=

∆p [bar]

Gegen den Druck schlies- send	Δp _{max}	Δp _s	Δp _{max}	Δp _s	Δp _{max}	Δp _s	Δp _{max}	Δp_s
VKR015F350-FF VKR015F340-FF VKR015F320-FF VKR015F310-FF VKR015F300-FF VKR020F320-FF VKR020F310-FF VKR020F300-FF VKR025F320-FF VKR025F310-FF VKR025F310-FF	3,5	5,4	3,5	5,4	3,5	5,4	3,5	5,4
VKR032F320-FF VKR032F310-FF VKR032F300-FF VKR040F320-FF VKR040F310-FF VKR040F300-FF VKR050F320-FF VKR050F310-FF VKR050F300-FF	2,4	3,5	2,4	3,5	2,4	3,5	2,4	3,5

Mit dem Druck schliessend nicht anwendbar

Funktionsbeschreibung

Der Regelkugelhahn kann mit einem elektrischen Antrieb in jede beliebige Zwischenstellung gesteuert werden. Schliessvorgang gegen den Betriebsdruck ist mit dem Antrieb AKM 105, 115(S) oder Ventilantrieb mit Federrückzug AKF 112, 113(S) möglich, Schliessvorgang mit dem Betriebsdruck ist nicht zugelassen.

Schliessvorgang gegen den Druck

Diese Regelkugelhähne zeichnen sich durch hohe Zuverlässigkeit und Präzision aus und leisten einen wichtigen Beitrag zur umweltfreundlichen Regelung. Sie erfüllen anspruchsvolle Anforderungen wie Schnellschliessfunktion, Differenzdrücke bewältigen, Mediumstemperatur regeln, Absperrfunktion erfüllen und dies alles in geräuscharmer Form.

Die Spindel des Kugelhahns wird mit dem Achsmitnehmer des Antriebs automatisch verbunden. Die aus Messing bestehende Kugel regelt einen gleichprozentigen Durchfluss im Regelast. Die Dichtheit der Kugel wird durch im Körper eingelegte PTFE-Manschetten gewährleistet. Hinter diese beiden Manschetten ist ein EPDM O-Ring eingelegt. Diese O-Ringe erlauben der Kugel und beider Manschetten eine kleine axiale Bewegung, was eine hohe Dichtheit und kleine Drehmomente ermöglicht. Die Dichtheit der Spindel wird durch 2 O-Ringe gewährleistet. Diese können nicht ersetzt werden.

Bestimmungsgemässe Verwendung

Dieses Produkt ist nur für den vom Hersteller vorgesehenen Verwendungszweck bestimmt, der in dem Abschnitt «Funktionsbeschreibung» beschrieben ist.

Hierzu zählt auch die Beachtung aller zugehörigen Produktvorschriften. Änderungen oder Umbauten sind nicht zulässig.

Projektierungs- und Montagehinweise

Die Kugelhähne werden mit Drehantrieben mit oder ohne Federrückzug kombiniert. Der Antrieb wird direkt auf den Kugelhahn aufgesteckt und mit einem Bajonettverschluss gehalten. Die Verbindung der

Antriebsachse mit der Spindel erfolgt automatisch, dazu soll die Achse des Kugelhahns in einer Zwischenposition stehen. Bei der ersten Inbetriebnahme der Anlage fährt der SUT-Antrieb auf Stellung offen und die beiden Geräte werden automatisch verbunden. Der Drehwinkel des Kugelhahns wird ebenfalls vom Antrieb detektiert und es sind keine weiteren Einstellungen nötig. Mit den SUT-Antrieben kann die Kennlinie beliebig auf linear oder quadratisch umgestellt werden. Um ein Blockieren des Kugelhahns in den Endstellungen zu vermeiden, wird der SUT-Antrieb eine Bewegung von ca. 30° Drehwinkel vornehmen, wenn sich das Stellsignal innerhalb 3 Tagen in den Endstellungen nicht geändert hat.

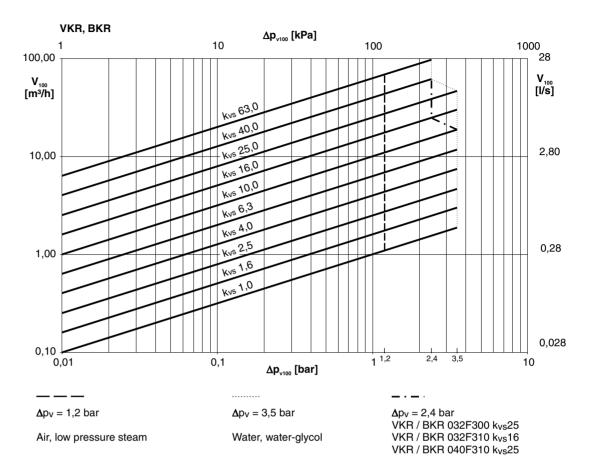
Damit Verunreinigungen im Wasser (z. B. Schweissperlen, Rostpartikel usw.) zurückgehalten werden und die PTFE-Manschette nicht beschädigt wird, ist der Einbau von Schmutzfängern z. B. pro Stockwerk oder Strang erforderlich. Schmutzfilter siehe Zubehör, je nach Typ auf Einsatz und Temperaturbereich achten. Anforderungen an die Wasserbeschaffenheit entsprechend VDI 2035. Alle Kugelhähne dürfen nur in geschlossenen Kreisläufen eingesetzt werden. Bei offenen Kreisläufen kann eine zu hohe Sauerstoffmischung die Kugelhähne zerstören. Um dies zu vermeiden, ist ein Sauerstoffbindemittel zu verwenden; dabei ist bezüglich Korrosion die Kompatibilität mit dem Hersteller der Lösung abzuklären. Dazu kann die weiter unten aufgeführte Materialliste verwendet werden. In den Anlagen werden meistens die Armaturen isoliert. Dabei ist jedoch zu beachten, dass der Flansch zur Aufnahme des Antriebs nicht isoliert wird.

Damit in ruhigen Räumen kein störendes Strömungsgeräusch hörbar wird, darf die Druckdifferenz über dem Kugelhahn 50% der angegebenen Werte nicht überschreiten.

Die Handkurbel ist auf dem Antrieb fest montiert. Zur Betätigung dieser Handkurbel muss der Handverstellungsknopf am Antrieb nach unten geschoben werden. Der Antrieb bleibt betriebslos solange dieser Knopf nicht wieder in die obere Stellung geschoben wird. An der Handkurbel ist auch ein Vierkant vorhanden, passend zum Vierkant der Spindel des Kugelhahns.

Zusätzliche technische Daten

Technisches Handbuch «Stellgeräte»	7 000477 001
Kenngrössen, Installationshinweise, Regelung, Allgemeines	Gültige EN-, DIN-, AD-, TRD und UVV Vorschriften
CE-Konformität DGRL 2014/68/EU	Fluidgruppe II, kein CE-Kennzeichen


Anwendung mit Wasser

Bei Verwendung von Wasser, gemischt mit Glykol oder Inhibitor, soll zur Sicherheit die Kompatibilität der im Kugelhahn vorhandenen Materialien und Dichtungen mit dem Hersteller abgeklärt werden. Dazu kann die weiter unten aufgeführte Materialliste verwendet werden. Wir empfehlen, dass bei Verwendung von Glykol die Konzentration zwischen 20% und 50% auszuwählen ist. Die Kugelhähne sind für Ex-Zonen nicht geeignet. Die ausgewählten Werkstoffe sind für den Bereich Trinkwasser zugelassen. Die Kugelhähne komplett haben keine Trinkwasserzulassung.

Montagelage

Das Stellgerät kann in beliebiger Lage montiert werden, jedoch wird die hängende Montagelage nicht empfohlen. Eindringendes Kondensat, Tropfwasser usw. in den Antrieb ist zu verhindern.

Durchflussdiagramm

Zusätzliche Angabe zur Ausführung

Körper des Kugelhahns ist aus DZR Pressmessing (EN 12165) mit Innengewinde zylindrisch nach ISO 7/1 Rp. Spindeldichtung mit doppeltem O-Ring aus Ethylen-Propylen.

Werkstoffnummern nach DIN

	DIN-Werkstoff-Nr.	DIN-Bezeichnung
Körper des Kugelhahns	CW602N	CuZn36Pb2As
Anschlussstutzen	CW602N	CuZn36Pb2As
Kugel, poliert, verchromt	CW602N	CuZn36Pb2As
Achse	CW602N	CuZn36Pb2As
O-Ring	EPDM	
Manschette	PTFE	

Erweiterte Angaben zu den Definitionen Druckdifferenz

 Δp_v :

Max. zul. Druckdifferenz über dem Kugelhahn bei jeder Hubstellung, begrenzt durch Geräuschpegel und Frosion

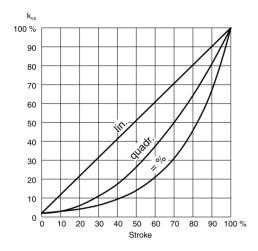
Mit dieser Kenngrösse wird der Kugelhahn als durchströmtes Element spezifisch in seinem hydraulischen Verhalten charakterisiert. Durch die Überwachung der Kavitation und Erosion und der damit verbundenen Geräuschbildung wird sowohl die Lebensdauer als auch die Einsatzfähigkeit verbessert.

Δp_{max} :

Max. zul. Druckdifferenz über dem Kugelhahn, bei der der Antrieb den Kugelhahn sicher öffnen und schliessen kann.

Berücksichtigt sind: Statischer Druck und strömungstechnische Einflüsse. Mit diesem Wert ist ein störungsfreier Hubdurchgang und Dichtheit gewährleistet. Dabei wird in keinem Fall der Wert Δp_v des Kugelhahns überschritten.

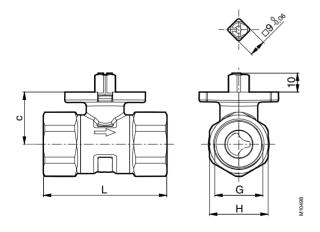
Δp_s :


Max. zul. Druckdifferenz über dem Kugelhahn im Störungsfall (z. B. Spannungsausfall, Temperaturund Drucküberhöhung, sowie Rohrbruch) bei der der Antrieb den Kugelhahn dicht schliessen und gegebenenfalls den ganzen Betriebsdruck gegen den Atmosphärendruck halten kann. Da es sich hier um eine Schnellschliessfunktion mit «schnellem» Hubdurchgang handelt, kann Δp_s grösser als Δp_{max} bzw. Δp_v sein. Die hier entstehenden strömungstechnischen Störeinwirkungen werden schnell durchfahren und sind bei dieser Funktionsweise von untergeordneter Bedeutung.

Apotat:

Leitungsdruck hinter dem Kugelhahn. Entspricht im Wesentlichen dem Ruhedruck bei abgeschalteter Pumpe, z. B. hervorgerufen durch Flüssigkeitshöhe der Anlage, Druckzunahme durch Druckspeicher, Dampfdruck usw.

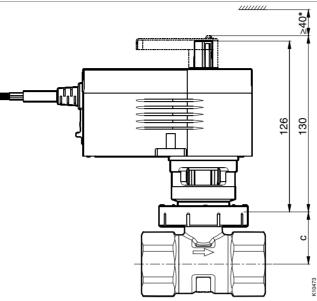
Kennlinie bei Antrieben mit Stellungsregler


Am Antrieb AKM 115S Gleichprozentig/linear/Quadratisch

Entsorgung

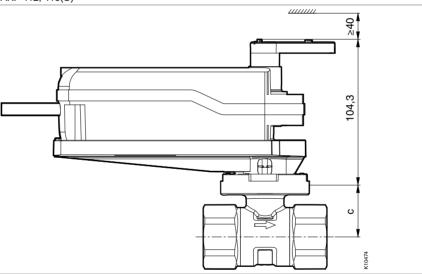
Bei einer Entsorgung ist die örtliche und aktuell gültige Gesetzgebung zu beachten. Weitere Hinweise zu Material und Werkstoffen entnehmen Sie bitte der Material- und Umweltdeklaration zu diesem Produkt.

Massbild

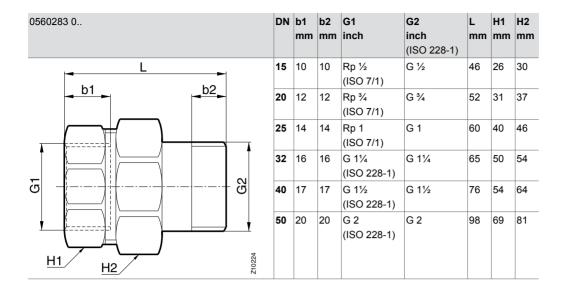


DN	С	G	L	Н
	mm	inch	mm	mm
15	27,6	Rp ⅓	61,6	26
20	27,6	Rp ¾	67,4	31
25	30,5	Rp 1	76,8	39
32	34,3	Rp 11/4	88,0	48

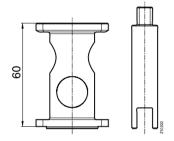
DN	c	G	L	Н
	mm	inch	mm	mm
40	39,8	Rp 1½	101,8	55
50	52,8	Rp 2	116,2	67


Kombinationen

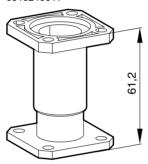
AKM 105, 115(S)

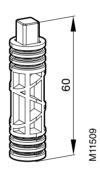

* mit Zubehör 0510480 00 . : 72 mm

AKF 112, 113(S)



Zubehör


0560332 0	DN	b mm	c mm	G inch (ISO 228-1)	L mm	H mm
	15	12	38	G 1/2	54	27
	20	15	43	G 3/4	67	34
	25	16	53	G 1	79	41
	32	17	64	G 1¼	98	51
	40	18	70	G 1½	106	57
b	50	20	85	G 2	122	69



0510420001

Fr. Sauter AG Im Surinam 55 CH-4016 Basel Tel. +41 61 - 695 55 55 www.sauter-controls.com