# VUE: 2-way flanged valve, PN 16/10 (pn.)

# How energy efficiency is improved

Efficient use in continuous control systems

# Features

Continuous control of cold and hot water and low-pressure steam up to 115 °C in closed circuits<sup>1</sup>)

11.1

- Water quality as per VDI 2035
- · In combination with AVP 242 valve actuators as a control unit
- · Not suitable for drinking water
- Valve with flange connection as per EN 1092-2, seal form B, for PN 16 and PN 10
- · Regulating valve, free of silicone grease, painted black
- · The valve is closed when the spindle is moved out
- Closing procedure against the pressure
- · Valve body and seat made of grey cast iron
- · Stainless-steel spindle
- · Plug made of brass with glass-fibre reinforced PTFE sealing ring
- · Stuffing box made of brass with wiper ring and double O-ring seal made of EPDM

# **Technical data**

# Parameters

A

s

| Parameters               |                                            |                                     |
|--------------------------|--------------------------------------------|-------------------------------------|
|                          | Nominal pressure                           | PN 16/10                            |
|                          | Connection                                 | Flange as per EN 1092-2, form B     |
|                          | Valve characteristic, control passage F200 | Linear                              |
|                          | Valve characteristic, control passage F300 | Equal-percentage                    |
|                          | Control ratio of valve                     | > 50:1                              |
|                          | Stuffing box                               | 2 EPDM O-rings                      |
|                          | Leakage rate                               | < 0.05% of K <sub>vs</sub> value    |
|                          | Valve stroke                               | 8 mm                                |
|                          |                                            |                                     |
| Ambient conditions       |                                            |                                     |
|                          | Operating temperature <sup>2)</sup>        | -10150 °C                           |
|                          | Operating pressure                         | PN 16:                              |
|                          |                                            | Up to 120 °C, 16 bar                |
|                          |                                            | At 150 °C, 14.4 bar                 |
|                          |                                            | PN 10:                              |
|                          |                                            | Up to 120 °C, 10 bar                |
|                          |                                            | At 150 °C, 9 bar                    |
|                          |                                            | Between 120 °C and 150 °C, a linear |
|                          |                                            | interpolation can be performed      |
|                          |                                            |                                     |
| Standards and directives |                                            |                                     |
|                          | Pressure and temperature data              | EN 764, EN 1333                     |
|                          | Flow parameters                            | EN 60534 (page 3)                   |

 Flow parameters
 EN 60534 (page 3)

 Pressure Equipment Directive
 97/23/EC (fluid group II)

 No CE label
 article 3.3

| Overview of types |                  |                       |        |
|-------------------|------------------|-----------------------|--------|
| Туре              | Nominal diameter | K <sub>vs</sub> value | Weight |
| VUE015F350        | DN 15            | 0.4 m³/h              | 3.2 kg |
| VUE015F340        | DN 15            | 0.63 m³/h             | 3.2 kg |
| VUE015F330        | DN 15            | 1 m³/h                | 3.2 kg |
| VUE015F320        | DN 15            | 1.6 m³/h              | 3.2 kg |
| VUE015F310        | DN 15            | 2.5 m³/h              | 3.2 kg |
| VUE015F300        | DN 15            | 4 m³/h                | 3.2 kg |
| VUE020F300        | DN 20            | 6.3 m³/h              | 4.1 kg |

<sup>1)</sup> Humidity must not exceed 75%

 $^{2)}$  At temperatures below 0 °C, use a stuffing box heater. Use adapter (accessory) at temperatures above 100 °C



VUE032F300





#### 11.1

| Туре       | Nominal diameter | K <sub>vs</sub> value | Weight  |
|------------|------------------|-----------------------|---------|
| VUE025F300 | DN 25            | 10 m³/h               | 4.7 kg  |
| VUE032F300 | DN 32            | 16 m³/h               | 7.3 kg  |
| VUE040F300 | DN 40            | 22 m³/h               | 8.6 kg  |
| VUE050F300 | DN 50            | 28 m³/h               | 11.2 kg |
| VUE050F200 | DN 50            | 40 m³/h               | 11.2 kg |
|            |                  |                       |         |

| Accessories |                                                                                                                    |
|-------------|--------------------------------------------------------------------------------------------------------------------|
| Туре        | Description                                                                                                        |
| 0372240001  | Manual adjustment for valves with 8 mm stroke                                                                      |
| 0372249001  | Adapter required when temperature of the medium is 100130 $^\circ C$ (recommended for temperatures <10 $^\circ C)$ |
| 0372249002  | Adapter required when temperature of the medium is 130150 °C                                                       |
| 0378284100  | Stuffing box heater 230V~, 15 W for medium below 0 °C                                                              |
| 0378284102  | Stuffing box heater 24V~, 15 W for medium below 0 °C                                                               |
| 0378368001  | Complete replacement stuffing box for DN 1550                                                                      |

# Combination of VUE with pneumatic actuator

A . . . . . . . . . . . . . .

- *i* Warranty: The technical data and pressure differences indicated here are applicable only in combination with SAUTER valve actuators. The warranty does not apply if used with valve actuators from other manufacturers.
- *i* Definition of  $\Delta p_{s}$ : Maximum admissible pressure drop in the event of a malfunction (pipe break after the valve) at which the actuator reliably closes the valve by means of a return spring.
- *i* Definition of △p <sub>max</sub>: Maximum admissible pressure drop in control mode at which the actuator reliably opens and closes the valve.
- **i** The running time is based on the centair air flow rate (400  $l_n/h$ ) and on a supply line with a length of 20 m and a diameter of 4 mm.

# Combination of VUE with pneumatic actuator AVP 242

| Actuator                                   | AVP242F001 |
|--------------------------------------------|------------|
| Admissible pres-<br>sure p <sub>stat</sub> | ≤ 6 bar    |
| Running time                               | 8 s        |
| Stroke                                     | 8 mm       |

∆p [bar]

| Closes against the pressure                                                                    | $\Delta p_{max}$ | $\Delta \mathbf{p_S}$ |
|------------------------------------------------------------------------------------------------|------------------|-----------------------|
| VUE015F350<br>VUE015F340<br>VUE015F330<br>VUE015F320<br>VUE015F310<br>VUE015F300<br>VUE020F300 | 10.0             | 16.0                  |
| VUE025F300                                                                                     | 10.0             | 12.0                  |
| VUE032F300                                                                                     | 6.5              | 6.5                   |
| VUE040F300                                                                                     | 4.0              | 4.0                   |
| VUE050F300<br>VUE050F200                                                                       | 2.5              | 2.5                   |

Cannot be used to close with the pressure

. ✓ At temperatures above 100°C, accessories are required

#### Pressure-stroke characteristic (with valve attached), characteristic not adjustable:

AVP242



#### **Description of operation**

The valve can be moved to any intermediate position with a pneumatic actuator. When the spindle is moved out, the control passage of the valve is closed. The valves may only be used closing against pressure. The flow direction marked on the valve must be observed. Closing with pressure is not permitted with pneumatic actuators, because this would cause pressure surges. The flow parameters correspond to EN 60534.

# Closing against the pressure



These control valves are characterised by their reliability and precision and make an important contribution towards environmentally friendly regulation. They meet challenges such as emergency functions, overcoming differential pressures, controlling medium temperatures and performing the shut-off function, all in a low-noise form.

The valve spindle is automatically and firmly connected to the actuator spindle. The brass plug controls the equal-percentage flow rate in the control passage. The tightness of the valve is ensured by the seat incorporated in the body.

The stuffing box is maintenance-free. This consists of a brass body, two O-rings, a wiper ring and a grease reserve. This is free of silicone grease, and silicone oil may not be used for the spindle. The grease reserve stops particles that may be present in the medium from penetrating to the upper O-ring.

#### Intended use

This product is only suitable for the purpose intended by the manufacturer, as described in the "Description of operation" section.

All related product regulations must also be adhered to. Changing or converting the product is not admissible.

#### **Engineering and fitting notes**

The actuator is mounted directly on the valve and fastened with screws. The actuator is connected with the valve spindle automatically. The closing point must be adjusted as described in the fitting instructions (MV 506012 AVP 242).

## Additional technical data

| EN 764, EN 1333                                 |
|-------------------------------------------------|
| VDI/VDE 2173                                    |
| P100013496                                      |
| Applicable EN, DIN, AD, TRD and UVV regulations |
|                                                 |
| MV 506008                                       |
|                                                 |

| Technical information                        |           |
|----------------------------------------------|-----------|
| AVP 242 F001                                 | MV 506041 |
| Declaration on materials and the environment | MD 76.111 |

#### **Fitting position**

The control unit can be fitted in any position, but the hanging position is not recommended. Condensate, drops of water, etc. must be prevented from entering the actuator. When installed horizontally, without any structural support for the actuator, the maximum weight on the valve is 25 kg. When the actuator is mounted on the valve, make sure that the plug is not twisted on the seat (this may damage the sealing surface). When insulating the valve, it may only be insulated up to the connecting clip of the actuator.

#### Using with steam

The valves can be used for low-pressure steam up to 115 °C with the same  $\Delta p_{max}$  values. When used as a regulating valve, make sure that the valve does not operate mainly on the lower third of its stroke range. This leads to an extremely high flow speed, which greatly reduces the serviceable life of the valve.

#### Using with water

So that impurities are retained in the water (welding beads, rust particles, etc.) and the spindle seal is not damaged, we recommend installing collecting filters, for example one for each floor or pipe run. Water requirements according to VDI 2035.

When using an additive in the water, the compatibility of the materials must be checked with the manufacturer of the medium. The materials table shown below may be used. When glycol is used, we recommend using a concentration of between 20% and 55%.

#### Other information regarding hydraulics and noise in systems

The valves can be used in a low-noise environment. To prevent noise, the pressure differences  $\Delta p_{max}$  listed below should not be exceeded.

The pressure difference  $\Delta p_v$  is the maximum pressure that may act on the valve regardless of the stroke position, in order that the risk of cavitation and erosion is limited. These values are irrespective of the actuator force. The cavitation accelerates wear on the plug and seat in the valve and causes noises. To prevent cavitation, the differential pressure should not exceed the value  $\Delta p_{krit}$ :

 $\Delta p_{krit} = (p1 - pv) \times 0.5$ 

p1 = upstream pressure before the valve (bar)

pv = steam pressure at operating temperature (bar)

The calculation works with absolute pressure.

Note that when the pressure difference  $\Delta p_{max}$  is exceeded, the valve can be damaged by cavitation and erosion. For the spring return, the stated  $\Delta p_s$  values are also the permissible differential pressure up to which the actuator can guarantee that the valve is closed in the event of an incident. Because this is an emergency function with a fast stroke movement (using a spring), this value can exceed  $\Delta p_{max}$ .

# Flow-rate chart



<sup>1:</sup> Against the pressure

| Туре   | Δρν                  |
|--------|----------------------|
|        | Against the pressure |
| VUE015 | 10                   |
| VUE020 | 10                   |
| VUE025 | 10                   |
| VUE032 | 9                    |
| VUE040 | 7                    |
| VUE050 | 5                    |

# Additional version information

Valve body made of grey cast iron as per EN 1561, code EN-GJL-250, material number EN-JL 1040 with smooth drilled flanges as per EN 1092-2, seal form B. Valve body protected by matt paint RAL 9005 jet black. Recommended for the welding flange as per EN 1092-1. Valve fitting length as per EN 558-1, basic series 1. Flat seal on valve body made of asbestos-free material.

# Material numbers as per DIN

|              | DIN material no. | DIN designation   |  |
|--------------|------------------|-------------------|--|
| Valve body   | EN-JL 1040       | EN-GJL-250 (GG25) |  |
| Valve seat   | EN-JL 1040       | EN-GJL-250        |  |
| Spindle      | 1.4305           | X8CrNiS18-9       |  |
| Plug         | CW617W           | CuZn40Pb2         |  |
| Plug seal    | PTFE             |                   |  |
| Stuffing box | CW617W           | CuZn40Pb2         |  |

## Additional details on the definitions of pressure difference

#### $\Delta \mathbf{p_v}$ :

Maximum admissible pressure difference over the valve in each stroke position, limited by noise level and erosion.

This parameter characterises the valve as a flow element with specific hydraulic behaviour. Monitoring the cavitation and erosion along with the associated noise increases the service life and the operational capacity.

#### $\Delta \mathbf{p}_{max}$ :

Maximum admissible pressure difference over the valve at which the actuator can reliably open and close the valve.

This takes account of static pressure and flow effects. This value ensures trouble-free stroke movement and closing of the valve. The value  $\Delta p_v$  of the valve is never exceeded.

#### $\Delta \mathbf{p_s}$ :

Maximum admissible pressure difference over the valve in the event of a malfunction (e.g. power failure, excessive temperature or pressure, pipe break) at which the actuator can close the valve tightly and, if necessary, maintain the entire operating pressure against atmospheric pressure. Because this is a quick-closing function with a rapid stroke movement,  $\Delta p_s$  can be greater than  $\Delta p_{max}$  or  $\Delta p_v$ . The disruptive flow effects that arise here are quickly passed through and are of minor importance in this mode.

For 3-way valves, the values only apply to the control passage.

#### $\Delta p_{stat}$ :

Line pressure behind the valve. This essentially corresponds to the dormant pressure when the pump is switched off, for example caused by the fluid level in the system, increased pressure due to pressure tanks, steam pressure, etc.

On valves that close under pressure, the static pressure plus the pump pressure must be used.

# Disposal

When disposing of the product, observe the currently applicable local laws. More information on materials can be found in the Declaration on materials and the environment for this product.

# **Dimension drawings**

# DN15...50



8

8

8

110 19 x 4

125 19 x 4 20

18

100 70,5 200

115 71 230

# AVP242F001

40

50

032

040

050



11.1

# Accessories



Fr. Sauter AG Im Surinam 55 CH-4016 Basel Tel. +41 61 - 695 55 55 www.sauter-controls.com