BUD: Vanne 3 voies à brides, PN 6 (él.)

Votre atout en matière d'efficacité énergétique

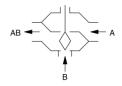
Utilisation efficace dans les régulations continues

Caractéristiques

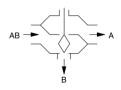
- · Régulation continue de l'eau froide et de l'eau chaude en circuits fermés
- Qualité de l'eau selon VDI 2035
- En combinaison avec les servomoteurs AVM 105(S), AVM 115(S), AVM 321(S), AVF 124 et AVF 125(S) comme appareil de réglage
- · Ne convient pas à l'eau potable
- Vanne avec raccord à brides selon EN 1092-2, joint d'étanchéité forme B, pour PN 16 et PN 10
- · Vanne de régulation sans graisse silicone, vernie en noir
- · Courbe caractéristique réglable sur courbe linéaire, exponentielle ou quadratique avec servomoteurs de vanne SUT
- · Voie de régulation fermée lorsque la tige de la vanne est sortie
- · Utilisation comme vanne mélangeuse ou vanne de distribution
- · Corps de vanne avec siège en fonte grise
- · Tige de vanne en acier inox
- Soupape de vanne en laiton avec anneau d'étanchéité en PTFE renforcé de fibres de verre
- · Presse-étoupe en laiton, avec racleur et joint torique double en EPDM

Caractéristiques techniques

·	_	
Valeurs caractéristiques		
	Pression nominale	PN 6
	Raccordement	Bride selon EN 1092-2, forme B
	Courbe caractéristique de la voie de régulation de la vanne F200	Linéaire
	Courbe caractéristique de la voie de régulation de la vanne F300	Exponentielle
	Courbe caractéristique de la voie de mélange	Linéaire
	Rapport de réglage de la vanne	> 50:1
	Presse-étoupe	2 joints toriques en EPDM
	Taux de fuite de la voie de régulation	< 0,05 % de la valeur K _{vs}
	Taux de fuite de la voie de mélange	< 1 % de la valeur K _{vs}
	Course de la vanne	8 mm
Conditions ambiantes ¹⁾		
	Température de service ²⁾	-10150 °C
	Pression de service	Jusqu'à 120 °C, 6 bar À 150 °C, 5,4 bar Peut être interpolé linéairement entre 120 °C et 150 °C
Normes, directives		
	Données de pression et de température	EN 764, EN 1333
	Valeurs caractéristiques d'écoule- ment	EN 60534 (page 3)
	DESP 2014/68/UE	Groupe de fluide II, liquide ou pression de la vapeur. Pas de marquage CE selon article 4.3
Apercu des types		


Aperçu des types			
Modèle	Diamètre nominal	Valeur K _{vs}	Poids
BUD015F320	DN 15	1,6 m³/h	3,2 kg
BUD015F310	DN 15	2,5 m³/h	3,2 kg

Le taux d'humidité dans l'air ne doit pas dépasser 75 %



BUD032F300

Vanne mélangeuse

Vanne de distribution

Températures inférieures à 0 °C : utiliser un chauffage de presse-étoupe. Températures supérieures à 100 °C : utiliser une pièce intermédiaire (accessoire)

Modèle	Diamètre nominal	Valeur K _{vs}	Poids
BUD015F300	DN 15	4 m³/h	3,2 kg
BUD020F300	DN 20	6,3 m³/h	4,1 kg
BUD025F300	DN 25	10 m³/h	4,7 kg
BUD032F300	DN 32	16 m³/h	7,1 kg
BUD040F300	DN 40	22 m³/h	8,4 kg
BUD050F300	DN 50	28 m³/h	10,9 kg
BUD050F200	DN 50	40 m³/h	11,2 kg

Accessoires	
Modèle	Description
0372240001	Réglage manuel pour vannes avec course de 8 mm
0372249001	Pièce intermédiaire nécessaire pour températures de fluide de 100130 °C (recommandée pour les températures de < 10 °C)
0372249002	Pièce intermédiaire nécessaire pour des températures de fluide de 130150 °C
0378284100	Chauffage presse-étoupe 230 V~, 15 W pour fluide en dessous de 0 °C
0378284102	Chauffage presse-étoupe 24 V~, 15 W pour fluide en dessous de 0 °C
0378368001	Presse-étoupe de rechange complet pour DN 1550

Combinaison BUD avec servomoteurs électriques

- *i* Prestation de garantie : les données techniques et différences de pression indiquées ne sont applicables que lorsque les pièces sont utilisées en combinaison avec des servomoteurs SAUTER. L'utilisation de servomoteurs d'autres fournisseurs annulera toute prestation de garantie.
- i Définition pour ∆p s : perte de pression max. adm. en cas de panne (rupture de tuyauterie en aval de la vanne), pour laquelle le servomoteur ferme la vanne de façon sûre à l'aide d'un ressort de rappel.
- j Définition pour Δp max.: perte de pression max. adm. en mode de régulation, pour laquelle le servomoteur peut encore ouvrir et fermer la vanne de façon sûre.

Combinaison BUD avec servomoteur électrique, poussée 250 N, 500 N

Servomoteur	AVM105F100	AVM105F120 AVM105F122	AVM105SF132	AVM115F120 AVM115F122	AVM115SF132
Poussée	250 N	250 N	250 N	500 N	500 N
Signal de com- mande	2/3 pt.	2/3 pt.	2/3 pt., 010 V	2/3 pt.	2/3 pt., 010 V
Temps de course	30 s	120 s	35/60/120 s	120 s	60/120 s

Δ p [bar]

Comme vanne mélangeuse	Δp _{max}				
BUD015F320 BUD015F310 BUD015F300 BUD020F300	4,0	4,0	4,0	6,0	6,0
BUD025F300	2,8	2,8	2,8	6,0	6,0
BUD032F300	2,1	2,1	2,1	5,2	5,2
BUD040F300	1,2	1,2	1,2	3,3	3,3
BUD050F300 BUD050F200	0,9	0,9	0,9	2,0	2,0

Pas utilisable comme vanne de distribution

Combinaison BUD avec servomoteur électrique avec rappel par ressort, poussée 500 N

Servomoteur	AVF124F130 AVF124F230	AVF125SF132 AVF125SF232
Poussée	500 N	500 N
Signal de com- mande	3 pt.	2/3 pt., 010 V, 420 mA
Temps de course	60/120 s	60/120 s

∆p [bar]

Comme vanne mélangeuse	∆p _{max}	Δp _s	Δ p _{max}	Δp _s
BUD015F320 BUD015F310 BUD015F300 BUD020F300 BUD025F300	6,0	6,0	6,0	6,0
BUD032F300	5,2	5,2	5,2	5,2
BUD040F300	3,3	3,3	3,3	3,3
BUD050F300 BUD050F200	2,0	2,0	2,0	2,0

Comme vanne de distribution	Δp_{max}	Δp_{s}	Δp_{max}	Δp_{s}
BUD015F320 BUD015F310 BUD015F300 BUD020F300	6,0	6,0	6,0	6,0
BUD025F300	5,0	6,0	5,0	6,0
BUD032F300	4,0	6,0	4,0	6,0
BUD040F300	2,5	6,0	2,5	6,0
BUD050F300 BUD050F200	1,5	6,0	1,5	6,0

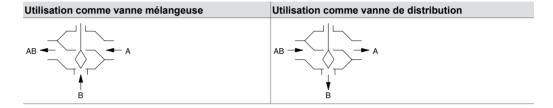
Températures supérieures à 100 °C : accessoires nécessaires

Combinaison BUD avec servomoteur électrique, poussée 1 000 N

Servomoteur	AVM321F110 AVM321F112	AVM321SF132
Poussée	1000 N	1000 N
Signal de com- mande	2/3 pt.	2/3 pt., 010 V, 420 mA
Temps de course	48/96 s	32/96 s

∆p [bar]

Comme vanne mélangeuse	Δp _{max}	Δp _{max}
BUD015F320		
BUD015F310		
BUD015F300		
BUD020F300	6,0	6,0
BUD025F300		
BUD032F300		
BUD040F300		
BUD050F300	4.0	4.0
BUD050F200	4,0	4,0


Comme vanne de distribution	Δp _{max}	Δ P $_{ extsf{max}}$
BUD015F320 BUD015F310 BUD015F300 BUD020F300	6,0	6,0
BUD025F300	5,0	5,0
BUD032F300	4,0	4,0

Servomoteur	AVM321F110 AVM321F112	AVM321SF132		
BUD040F300	2,5	2,5		
BUD050F300 BUD050F200	1,5	1,5		

* Températures supérieures à 100 °C : accessoires nécessaires

Description du fonctionnement

Cette vanne peut uniquement être utilisée pour la régulation continue d'eau froide et d'eau chaude sanitaire dans des circuits fermés. La vanne peut être commandée avec un servomoteur électrique dans la position intermédiaire souhaitée. Lorsque la tige de la vanne est sortie, la voie de régulation de la vanne est fermée. Ces vannes peuvent être utilisées comme vannes mélangeuses ou comme vannes de distribution. En cas de montage comme vanne mélangeuse, il faut tenir compte du sens du flux marqué sur la vanne. En cas d'utilisation comme vanne de distribution, la vanne est montée dans le sens contraire du flux. L'utilisation comme vanne mélangeuse est à privilégier. Les valeurs caractéristiques d'écoulement correspondent à la norme EN 60534.

Les vannes de régulation se distinguent par une fiabilité et une précision élevées et contribuent de manière décisive à une régulation respectueuse de l'environnement. Elles satisfont des exigences élevées telles que la fonction de fermeture rapide, la maîtrise de pressions différentielles, la régulation de la température de fluide, la réalisation de la fonction de fermeture, et tout cela de manière si-lencieuse.

La tige de la vanne est raccordée automatiquement et fermement à la tige du servomoteur. La soupape de vanne en laiton régule un débit exponentiel dans la voie de régulation. Afin de compenser la courbe caractéristique complémentaire du consommateur et de garantir une quantité égale du fluide indépendamment de la position de la vanne, la voie de mélange agit avec une courbe caractéristique linéaire. L'étanchéité de cette vanne est assurée par le siège usiné dans le corps.

Le presse-étoupe est exempt de maintenance. Il se compose d'un corps en laiton, de 2 joints toriques, d'un racleur et d'une réserve de graisse. Cette graisse est exempte de silicone. Il ne faut pas utiliser de lubrifiant à base de silicone pour la tige de la vanne.

Utilisation conforme

Ce produit est conçu uniquement pour l'emploi prévu par le fabricant, décrit à la section « Description du fonctionnement ».

Le respect de la législation relative au produit en fait également partie. Les modifications ou transformations ne sont pas autorisées.

Remarques concernant l'étude du projet et le montage

Les vannes sont combinées aux servomoteurs avec ou sans rappel par ressort. Le servomoteur est placé directement sur la vanne et fixé avec un écrou ou des vis. La connexion du servomoteur à la tige de la vanne se fait automatiquement. Le servomoteur sort lors de la première mise en service de l'installation. Le dispositif de fermeture se ferme automatiquement dès qu'il a atteint le siège inférieur de la vanne. La course de la vanne est également détectée par le servomoteur. Aucun autre réglage n'est requis. La force sur le siège est ainsi toujours la même, ce qui garantit le plus petit taux de fuite possible. Les servomoteurs SUT permettent de permuter la courbe caractéristique sur linéaire ou quadratique selon les souhaits. La combinaison de l'AVM 105S avec DN 50 F200 ne peut être permutée sur exponentielle.

Données techniques complémentaires

Réglette SAUTER pour le dimensionnement des vannes	P100013496
Manuel d'utilisation de la réglette	7 000129 001

Valeurs caractéristiques, instructions d'installation, régulation, généralité	Prescriptions EN, DIN, AD, TRD et			
	OLAA en vigueur			
Instructions de montage :				
DN 1550	MV 506008			
AVM 105,115,105S,115S	MV 506065			
AVM 125S	MV 506066			
AVF 124,124S	MV 505851			
AVF 125S	MV 506067			
AVM 321S	P 100011900			
Déclaration matériaux et environnement	MD 56.111			

Position de montage

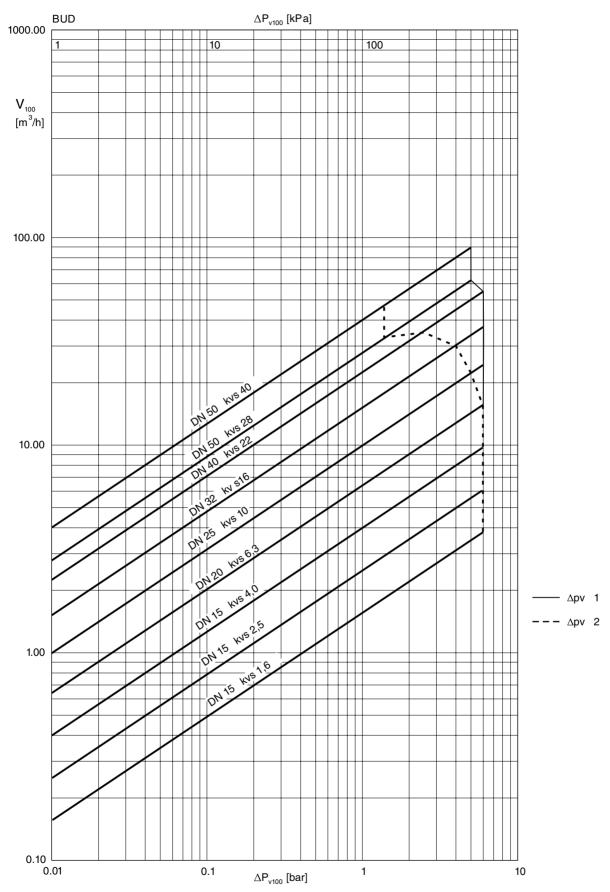
L'appareil de réglage peut être monté dans une position quelconque. Toutefois, la position de montage suspendue n'est pas recommandée. Veillez à ce des substances telles que condensat ou gouttes d'eau, etc. ne pénètrent pas dans le servomoteur.

Lors du montage du servomoteur sur la vanne, il faut s'assurer que la soupape sur le siège n'est pas tournée (endommagement de la surface d'étanchéité). L'isolation de la vanne doit s'arrêter à la bride de raccordement du servomoteur.

Utilisation avec de l'eau

Afin d'assurer la rétention des impuretés dans l'eau (p. ex. boulettes de soudure, particules de rouille, etc.) et d'éviter que le joint de la tige ne soit endommagé, nous recommandons le montage de filtres, p. ex. par étage ou par colonne. Les exigences relatives à la qualité de l'eau sont celles de la norme VDI 2035. En cas d'utilisation d'un additif dans l'eau, la compatibilité des matériaux doit être vérifiée avec le fabricant du fluide. La liste des matériaux indiquée ci-dessous peut être utilisée à cette fin. Nous recommandons, en cas d'utilisation de glycol, de choisir une concentration comprise entre 20 % et 55 %.

Autres remarques concernant le système hydraulique et les bruits dans les installations


Les vannes peuvent être utilisées dans un environnement silencieux. Afin d'éviter le bruit, les différences de pression ∆p_{max}, tel qu'indiqué ci-dessous, ne doivent pas être dépassées. Afin d'éviter le bruit, les différences de pression Δp_{max} , tel qu'indiqué ci-dessous, ne doivent pas être dépassées. Ces valeurs sont indiquées comme valeurs recommandées sur l'abaque des pertes de charge. La différence de pression Δp_v est la plus haute pression admissible au niveau de la vanne, indépendamment de la position de la course, afin de limiter le risque de cavitation et d'érosion. Ces valeurs sont indépendantes de la force du servomoteur. La cavitation accélère l'usure et génère du bruit. Afin d'éviter une cavitation, la pression différentielle au niveau de la vanne ne doit pas dépasser la valeur Δp_{crit} :

- $\Delta p_{crit} = (p1 pv) \times 0.5$
- p1 = pression primaire avant la vanne (bar)
- p_v = pression de la vapeur à température de service (bar)

Le calcul s'effectue avec la pression absolue.

Dans le cas d'un rappel par ressort, les valeurs ∆ps représentent simultanément la pression différentielle admissible jusqu'à laquelle le servomoteur assure une fermeture de la vanne en cas d'incident. Étant donné qu'il s'agit d'une fonction de fermeture rapide avec un mouvement « rapide » de la course (au moyen du ressort), cette valeur peut dépasser Δp_{max} .

Diagramme de débit

- 1 : Vanne mélangeuse
- 2 : Vanne de distribution

Туре	Δp_v				
	Utilisation comme vanne mélangeuse	Utilisation comme vanne de distribution			
BUD015F***	6	6			
BUD020F300	6	6			
BUD025F300	6	5			
BUD032F300	6	4			
BUD040F300	6	2,5			
BUD050F***	5	1,5			

Informations complémentaires concernant le modèle

Corps de vanne en fonte grise selon EN 1561, code EN-GJL-250, numéro de matériau EN-JL 1040 à brides lisses selon EN 1092-2, joint d'étanchéité forme B. Corps de vanne protégé par une couleur mate selon RAL 9005 noir foncé. Recommandation pour la bride à souder selon EN 1092-1. Encombrement selon EN 558-1, série de base 1. Joint plat sur le corps de vanne en matériel sans amiante.

Numéros de matériau selon DIN

	N° de matériau DIN	Désignation DIN
Corps de vanne	EN-JL 1040	EN-GJL-250 (GG25)
Siège de vanne	EN-JL 1040	EN-GJL-250
Tige de la vanne	1.4305	X8CrNiS18-9
Soupape de vanne	CW617W	CuZn40Pb2
Joint de soupape	PTFE	
Presse-étoupe	CW617W	CuZn40Pb2

Informations détaillées sur les définitions de différence de pression

Δp_v :

Pression différentielle max. admissible sur la vanne pour chaque position de la course, limitée par le niveau sonore et l'érosion.

Cette valeur caractéristique caractérise la vanne comme élément conducteur spécifiquement dans son comportement hydraulique. Le contrôle de la cavitation, de l'érosion et du bruit en résultant permet d'améliorer aussi bien la durée de vie que l'état de fonctionnement.

Δp_{max} :

Pression différentielle max. adm. sur la vanne, pour laquelle le servomoteur peut encore ouvrir et fermer la vanne de façon sûre.

Sont prises en compte : la pression statique et les influences des flux. Cette valeur garantit un mouvement de la course et une étanchéité sans problème. La valeur Δp_V de la vanne n'est jamais dépassée.

Δp_s :

Pression différentielle max. admissible sur la vanne en cas de défaut (p. ex. absence de tension, pression et température excessives, rupture de tuyauterie) pour laquelle le servomoteur peut fermer la vanne de manière étanche et, le cas échéant, maintenir toute la pression de service contre la pression atmosphérique. Étant donné qu'il s'agit ici d'une fonction de fermeture rapide avec un mouvement « rapide » de la course, Δp_s peut être supérieure à Δp_{max} ou Δp_v . Les interférences des flux survenant ici passeront rapidement et sont d'une importance mineure pour ce mode de fonctionnement.

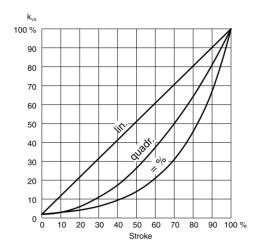
Pour les vannes 3 voies, les valeurs ne s'appliquent qu'à la voie de régulation.

Δp_{stat} :

Pression de la conduite derrière la vanne. Elle correspond essentiellement à la pression de repos lorsque la pompe est désactivée, générée p. ex. par le niveau du fluide de l'installation, l'accroissement de pression par le réservoir de pression, la pression de la vapeur, etc.

Pour les vannes qui ferment avec la pression, il faut utiliser pour cela l'addition de la pression statique et de la pression de la pompe.

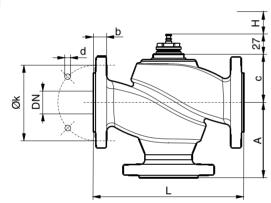
Élimination


Lors de l'élimination, il faut respecter le cadre juridique local actuellement en vigueur.

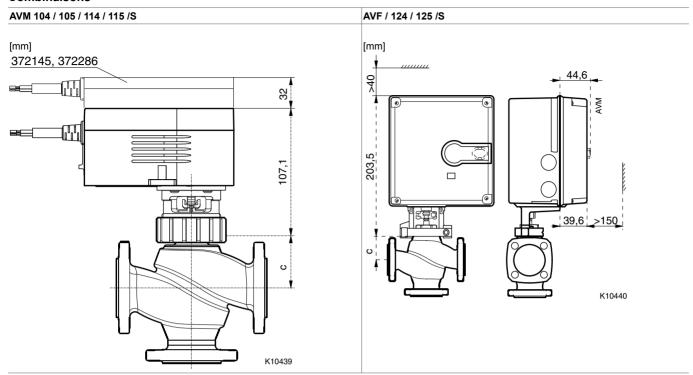
Vous trouverez des informations complémentaires concernant les matériaux dans la « Déclaration matériaux et environnement » relative à ce produit.

Courbe caractéristique pour les servomoteurs avec positionneurs

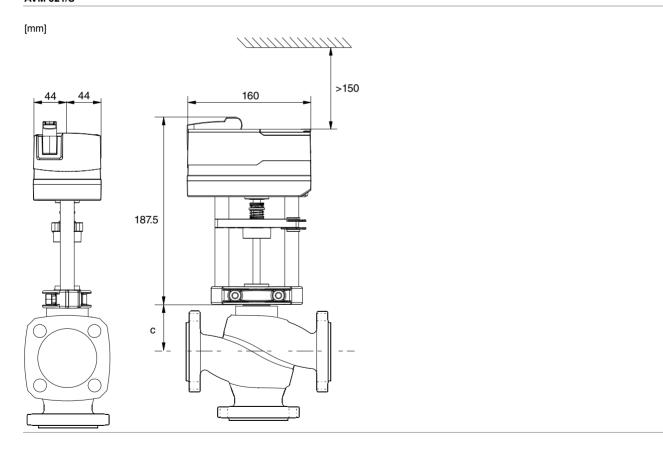
Sur servomoteur AVM 105S, AVM 115S ou AVM 321S


Exponentielle/linéaire Réglable avec le commutateur de codage

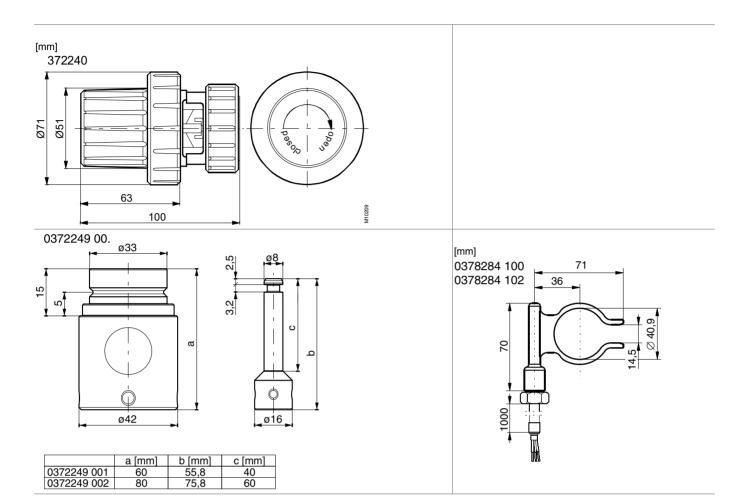
Plan d'encombrement


DN 15...50

[mm]



VUD, BUD	DN	Α	С	L	Н	k	d	b
015	15	70	41,5	130	8	55	11 x 4	14
020	20	75	48	150	8	65	11 x 4	16
025	25	80	54,5	160	8	75	11 x 4	16
032	32	95	60,5	180	8	90	14 x 4	18
040	40	100	70,5	200	8	100	14 x 4	18
050	50	115	71	230	8	110	14 x 4	20


Combinaisons

AVM 321/S

Accessoire

Fr. Sauter AG Im Surinam 55 CH-4016 Bâle Tél. +41 61 - 695 55 55 www.sauter-controls.com